HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, anticommutativity is a specific property of some non-
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the ''inverse'' of the result with unswapped arguments. The notion '' inverse'' refers to a group structure on the operation's
codomain In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
, possibly with another operation. Subtraction is an anticommutative operation because commuting the operands of gives for example, Another prominent example of an anticommutative operation is the Lie bracket. In
mathematical physics Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the de ...
, where
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
is of central importance, or even just in multilinear algebra these operations are mostly (multilinear with respect to some vector structures and then) called antisymmetric operations, and when they are not already of
arity In logic, mathematics, and computer science, arity () is the number of arguments or operands taken by a function, operation or relation. In mathematics, arity may also be called rank, but this word can have many other meanings. In logic and ...
greater than two, extended in an
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
setting to cover more than two
arguments An argument is a series of sentences, statements, or propositions some of which are called premises and one is the conclusion. The purpose of an argument is to give reasons for one's conclusion via justification, explanation, and/or persua ...
.


Definition

If A, B are two abelian groups, a bilinear map f\colon A^2 \to B is anticommutative if for all x, y \in A we have :f(x, y) = - f(y, x). More generally, a multilinear map g : A^n \to B is anticommutative if for all x_1, \dots x_n \in A we have :g(x_1,x_2, \dots x_n) = \text(\sigma) g(x_,x_,\dots x_) where \text(\sigma) is the sign of the
permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
\sigma.


Properties

If the abelian group B has no 2- torsion, implying that if x = -x then x = 0, then any anticommutative bilinear map f\colon A^2 \to B satisfies :f(x, x) = 0. More generally, by transposing two elements, any anticommutative multilinear map g\colon A^n \to B satisfies :g(x_1, x_2, \dots x_n) = 0 if any of the x_i are equal; such a map is said to be alternating. Conversely, using multilinearity, any alternating map is anticommutative. In the binary case this works as follows: if f\colon A^2 \to B is alternating then by bilinearity we have :f(x+y, x+y) = f(x, x) + f(x, y) + f(y, x) + f(y, y) = f(x, y) + f(y, x) = 0 and the proof in the multilinear case is the same but in only two of the inputs.


Examples

Examples of anticommutative binary operations include: *
Cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and ...
* Lie bracket of a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
* Lie bracket of a
Lie ring In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identi ...
* Subtraction


See also

* Commutativity *
Commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, ...
*
Exterior algebra In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector ...
* Graded-commutative ring *
Operation (mathematics) In mathematics, an operation is a function from a set to itself. For example, an operation on real numbers will take in real numbers and return a real number. An operation can take zero or more input values (also called "'' operands''" or "arg ...
* Symmetry in mathematics * Particle statistics (for anticommutativity in physics).


References

*.


External links

*. Which references th
Original Russian work
*{{MathWorld , title=Anticommutative , urlname=Anticommutative Properties of binary operations