Ambiguous Dimension
   HOME

TheInfoList



OR:

Ambiguity is the type of
meaning Meaning most commonly refers to: * Meaning (linguistics), meaning which is communicated through the use of language * Meaning (philosophy), definition, elements, and types of meaning discussed in philosophy * Meaning (non-linguistic), a general te ...
in which a phrase, statement or resolution is not explicitly defined, making several interpretations plausible. A common aspect of ambiguity is uncertainty. It is thus an attribute of any idea or statement whose intended meaning cannot be definitively resolved according to a rule or process with a finite number of steps. (The '' ambi-'' part of the term reflects an idea of " two", as in "two meanings".) The concept of ambiguity is generally contrasted with vagueness. In ambiguity, specific and distinct interpretations are permitted (although some may not be immediately obvious), whereas with information that is vague, it is difficult to form any interpretation at the desired level of specificity.


Linguistic forms

Lexical ambiguity is contrasted with semantic ambiguity. The former represents a choice between a finite number of known and meaningful context-dependent interpretations. The latter represents a choice between any number of possible interpretations, none of which may have a standard agreed-upon meaning. This form of ambiguity is closely related to vagueness. Linguistic ambiguity can be a problem in law, because the interpretation of written documents and oral agreements is often of paramount importance.


Lexical ambiguity

The lexical ambiguity of a word or phrase pertains to its having more than one meaning in the language to which the word belongs. "Meaning" here refers to whatever should be captured by a good dictionary. For instance, the word "bank" has several distinct lexical definitions, including " financial institution" and " edge of a river". Or consider " apothecary". One could say "I bought herbs from the apothecary". This could mean one actually spoke to the apothecary (
pharmacist A pharmacist, also known as a chemist (Commonwealth English) or a druggist (North American and, archaically, Commonwealth English), is a healthcare professional who prepares, controls and distributes medicines and provides advice and instructi ...
) or went to the apothecary (
pharmacy Pharmacy is the science and practice of discovering, producing, preparing, dispensing, reviewing and monitoring medications, aiming to ensure the safe, effective, and affordable use of medicines. It is a miscellaneous science as it links heal ...
). The context in which an ambiguous word is used often makes it evident which of the meanings is intended. If, for instance, someone says "I buried $100 in the bank", most people would not think someone used a shovel to dig in the mud. However, some linguistic contexts do not provide sufficient information to disambiguate a used word. Lexical ambiguity can be addressed by algorithmic methods that automatically associate the appropriate meaning with a word in context, a task referred to as word-sense disambiguation. The use of multi-defined words requires the author or speaker to clarify their context, and sometimes elaborate on their specific intended meaning (in which case, a less ambiguous term should have been used). The goal of clear concise communication is that the receiver(s) have no misunderstanding about what was meant to be conveyed. An exception to this could include a politician whose " weasel words" and
obfuscation Obfuscation is the obscuring of the intended meaning of communication by making the message difficult to understand, usually with confusing and ambiguous language. The obfuscation might be either unintentional or intentional (although intent u ...
are necessary to gain support from multiple constituents with mutually exclusive conflicting desires from their candidate of choice. Ambiguity is a powerful tool of political science. More problematic are words whose senses express closely related concepts. "Good", for example, can mean "useful" or "functional" (''That's a good hammer''), "exemplary" (''She's a good student''), "pleasing" (''This is good soup''), "moral" (''a good person'' versus ''the lesson to be learned from a story''), " righteous", etc. "I have a good daughter" is not clear about which sense is intended. The various ways to apply
prefix A prefix is an affix which is placed before the Word stem, stem of a word. Adding it to the beginning of one word changes it into another word. For example, when the prefix ''un-'' is added to the word ''happy'', it creates the word ''unhappy'' ...
es and
suffix In linguistics, a suffix is an affix which is placed after the stem of a word. Common examples are case endings, which indicate the grammatical case of nouns, adjectives, and verb endings, which form the conjugation of verbs. Suffixes can carry ...
es can also create ambiguity ("unlockable" can mean "capable of being unlocked" or "impossible to lock").


Semantic and syntactic ambiguity

Semantic ambiguity occurs when a word, phrase or sentence, taken out of context, has more than one interpretation. In "We saw her duck" (example due to Richard Nordquist), the words "her duck" can refer either # to the person's bird (the noun "duck", modified by the possessive pronoun "her"), or # to a motion she made (the verb "duck", the subject of which is the objective pronoun "her", object of the verb "saw"). Syntactic ambiguity arises when a sentence can have two (or more) different meanings because of the structure of the sentence—its syntax. This is often due to a modifying expression, such as a prepositional phrase, the application of which is unclear. "He ate the cookies on the couch", for example, could mean that he ate those cookies that were on the couch (as opposed to those that were on the table), or it could mean that he was sitting on the couch when he ate the cookies. "To get in, you will need an entrance fee of $10 or your voucher and your drivers' license." This could mean that you need EITHER ten dollars OR BOTH your voucher and your license. Or it could mean that you need your license AND you need EITHER ten dollars OR a voucher. Only rewriting the sentence, or placing appropriate punctuation can resolve a syntactic ambiguity.Critical Thinking, 10th ed., Ch 3, Moore, Brooke N. and Parker, Richard. McGraw-Hill, 2012 For the notion of, and theoretic results about, syntactic ambiguity in artificial, formal languages (such as computer programming languages), see Ambiguous grammar. Usually, semantic and syntactic ambiguity go hand in hand. The sentence "We saw her duck" is also syntactically ambiguous. Conversely, a sentence like "He ate the cookies on the couch" is also semantically ambiguous. Rarely, but occasionally, the different parsings of a syntactically ambiguous phrase result in the same meaning. For example, the command "Cook, cook!" can be parsed as "Cook (noun used as vocative), cook (imperative verb form)!", but also as "Cook (imperative verb form), cook (noun used as vocative)!". It is more common that a syntactically unambiguous phrase has a semantic ambiguity; for example, the lexical ambiguity in "Your boss is a funny man" is purely semantic, leading to the response "Funny ha-ha or funny peculiar?" Spoken language can contain many more types of ambiguities which are called phonological ambiguities, where there is more than one way to compose a set of sounds into words. For example, "ice cream" and "I scream". Such ambiguity is generally resolved according to the context. A mishearing of such, based on incorrectly resolved ambiguity, is called a
mondegreen A mondegreen () is a mishearing or misinterpretation of a phrase in a way that gives it a new meaning. Mondegreens are most often created by a person listening to a poem or a song; the listener, being unable to hear a lyric clearly, substitutes w ...
.


Philosophy

Philosophers (and other users of logic) spend a lot of time and effort searching for and removing (or intentionally adding) ambiguity in arguments because it can lead to incorrect conclusions and can be used to deliberately conceal bad arguments. For example, a politician might say, "I oppose taxes which hinder economic growth", an example of a glittering generality. Some will think they oppose taxes in general because they hinder economic growth. Others may think they oppose only those taxes that they believe will hinder economic growth. In writing, the sentence can be rewritten to reduce possible misinterpretation, either by adding a comma after "taxes" (to convey the first sense) or by changing "which" to "that" (to convey the second sense) or by rewriting it in other ways. The devious politician hopes that each constituent will interpret the statement in the most desirable way, and think the politician supports everyone's opinion. However, the opposite can also be true—an opponent can turn a positive statement into a bad one if the speaker uses ambiguity (intentionally or not). The logical fallacies of amphiboly and equivocation rely heavily on the use of ambiguous words and phrases. In
continental philosophy Continental philosophy is a term used to describe some philosophers and philosophical traditions that do not fall under the umbrella of analytic philosophy. However, there is no academic consensus on the definition of continental philosophy. Pri ...
(particularly phenomenology and existentialism), there is much greater tolerance of ambiguity, as it is generally seen as an integral part of the human condition.
Martin Heidegger Martin Heidegger (; ; 26 September 188926 May 1976) was a German philosopher who is best known for contributions to phenomenology, hermeneutics, and existentialism. He is among the most important and influential philosophers of the 20th centur ...
argued that the relation between the subject and object is ambiguous, as is the relation of mind and body, and part and whole. In Heidegger's phenomenology, Dasein is always in a meaningful world, but there is always an underlying background for every instance of signification. Thus, although some things may be certain, they have little to do with Dasein's sense of care and existential anxiety, e.g., in the face of death. In calling his work Being and Nothingness an "essay in phenomenological ontology" Jean-Paul Sartre follows Heidegger in defining the human essence as ambiguous, or relating fundamentally to such ambiguity.
Simone de Beauvoir Simone Lucie Ernestine Marie Bertrand de Beauvoir (, ; ; 9 January 1908 – 14 April 1986) was a French existentialist philosopher, writer, social theorist, and feminist activist. Though she did not consider herself a philosopher, and even th ...
tries to base an ethics on Heidegger's and Sartre's writings (The Ethics of Ambiguity), where she highlights the need to grapple with ambiguity: "as long as there have been philosophers and they have thought, most of them have tried to mask it... And the ethics which they have proposed to their disciples has always pursued the same goal. It has been a matter of eliminating the ambiguity by making oneself pure inwardness or pure externality, by escaping from the sensible world or being engulfed by it, by yielding to eternity or enclosing oneself in the pure moment." Ethics cannot be based on the authoritative certainty given by mathematics and logic, or prescribed directly from the empirical findings of science. She states: "Since we do not succeed in fleeing it, let us, therefore, try to look the truth in the face. Let us try to assume our fundamental ambiguity. It is in the knowledge of the genuine conditions of our life that we must draw our strength to live and our reason for acting". Other continental philosophers suggest that concepts such as life, nature, and sex are ambiguous. Corey Anton has argued that we cannot be certain what is separate from or unified with something else: language, he asserts, divides what is not, in fact, separate. Following Ernest Becker, he argues that the desire to 'authoritatively disambiguate' the world and existence has led to numerous ideologies and historical events such as genocide. On this basis, he argues that ethics must focus on 'dialectically integrating opposites' and balancing tension, rather than seeking a priori validation or certainty. Like the existentialists and phenomenologists, he sees the ambiguity of life as the basis of creativity.


Literature and rhetoric

In literature and rhetoric, ambiguity can be a useful tool. Groucho Marx's classic joke depends on a grammatical ambiguity for its humor, for example: "Last night I shot an elephant in my pajamas. How he got in my pajamas, I'll never know". Songs and poetry often rely on ambiguous words for artistic effect, as in the song title "Don't It Make My Brown Eyes Blue" (where "blue" can refer to the color, or to sadness). In the narrative, ambiguity can be introduced in several ways: motive, plot, character. F. Scott Fitzgerald uses the latter type of ambiguity with notable effect in his novel ''The Great Gatsby''.


Mathematical notation

Mathematical notation, widely used in physics and other sciences, avoids many ambiguities compared to expression in natural language. However, for various reasons, several lexical,
syntactic In linguistics, syntax () is the study of how words and morphemes combine to form larger units such as phrases and sentences. Central concerns of syntax include word order, grammatical relations, hierarchical sentence structure (constituency), ...
and
semantic Semantics (from grc, σημαντικός ''sēmantikós'', "significant") is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and comput ...
ambiguities remain.


Names of functions

The ambiguity in the style of writing a function should not be confused with a multivalued function, which can (and should) be defined in a deterministic and unambiguous way. Several special functions still do not have established notations. Usually, the conversion to another notation requires to scale the argument or the resulting value; sometimes, the same name of the function is used, causing confusions. Examples of such underestablished functions: *
Sinc function In mathematics, physics and engineering, the sinc function, denoted by , has two forms, normalized and unnormalized.. In mathematics, the historical unnormalized sinc function is defined for by \operatornamex = \frac. Alternatively, the u ...
* Elliptic integral of the third kind; translating elliptic integral form MAPLE to
Mathematica Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allow machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimizat ...
, one should replace the second argument to its square, see Talk:Elliptic integral#List of notations; dealing with complex values, this may cause problems. * Exponential integral * Hermite polynomial


Expressions

Ambiguous expressions often appear in physical and mathematical texts. It is common practice to omit multiplication signs in mathematical expressions. Also, it is common to give the same name to a variable and a function, for example, f=f(x). Then, if one sees f=f(y+1), there is no way to distinguish whether it means f=f(x) multiplied by (y+1), or function f evaluated at argument equal to (y+1). In each case of use of such notations, the reader is supposed to be able to perform the deduction and reveal the true meaning. Creators of algorithmic languages try to avoid ambiguities. Many algorithmic languages ( C++ and Fortran) require the character * as symbol of multiplication. The Wolfram Language used in
Mathematica Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allow machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimizat ...
allows the user to omit the multiplication symbol, but requires square brackets to indicate the argument of a function; square brackets are not allowed for grouping of expressions. Fortran, in addition, does not allow use of the same name (identifier) for different objects, for example, function and variable; in particular, the expression f=f(x) is qualified as an error. The order of operations may depend on the context. In most programming languages, the operations of division and multiplication have equal priority and are executed from left to right. Until the last century, many editorials assumed that multiplication is performed first, for example, a/bc is interpreted as a/(bc); in this case, the insertion of parentheses is required when translating the formulas to an algorithmic language. In addition, it is common to write an argument of a function without parenthesis, which also may lead to ambiguity. In the
scientific journal In academic publishing, a scientific journal is a periodical publication intended to further the progress of science, usually by reporting new research. Content Articles in scientific journals are mostly written by active scientists such as s ...
style, one uses roman letters to denote elementary functions, whereas variables are written using italics. For example, in mathematical journals the expression s i n does not denote the
sine function In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opp ...
, but the product of the three variables s, i, n, although in the informal notation of a slide presentation it may stand for \sin. Commas in multi-component subscripts and superscripts are sometimes omitted; this is also potentially ambiguous notation. For example, in the notation T_, the reader can only infer from the context whether it means a single-index object, taken with the subscript equal to product of variables m, n and k, or it is an indication to a trivalent tensor.


Examples of potentially confusing ambiguous mathematical expressions

An expression such as \sin^2\alpha/2 can be understood to mean either (\sin(\alpha/2))^2 or (\sin \alpha)^2/2. Often the author's intention can be understood from the context, in cases where only one of the two makes sense, but an ambiguity like this should be avoided, for example by writing \sin^2(\alpha/2) or \frac\sin^2\alpha. The expression \sin^\alpha means \arcsin(\alpha) in several texts, though it might be thought to mean (\sin \alpha)^, since \sin^ \alpha commonly means (\sin \alpha)^. Conversely, \sin^2 \alpha might seem to mean \sin(\sin \alpha), as this exponentiation notation usually denotes function iteration: in general, f^2(x) means f(f(x)). However, for trigonometric and hyperbolic functions, this notation conventionally means exponentiation of the result of function application. The expression a/2b can be interpreted as meaning (a/2)b; however, it is more commonly understood to mean a/(2b).


Notations in quantum optics and quantum mechanics

It is common to define the coherent states in quantum optics with ~, \alpha\rangle~ and states with fixed number of photons with ~, n\rangle~. Then, there is an "unwritten rule": the state is coherent if there are more Greek characters than Latin characters in the argument, and ~n~photon state if the Latin characters dominate. The ambiguity becomes even worse, if ~, x\rangle~ is used for the states with certain value of the coordinate, and ~, p\rangle~ means the state with certain value of the momentum, which may be used in books on quantum mechanics. Such ambiguities easily lead to confusions, especially if some normalized adimensional, dimensionless variables are used. Expression , 1\rangle may mean a state with single photon, or the coherent state with mean amplitude equal to 1, or state with momentum equal to unity, and so on. The reader is supposed to guess from the context.


Ambiguous terms in physics and mathematics

Some physical quantities do not yet have established notations; their value (and sometimes even dimension, as in the case of the Einstein coefficients), depends on the system of notations. Many terms are ambiguous. Each use of an ambiguous term should be preceded by the definition, suitable for a specific case. Just like Ludwig Wittgenstein states in Tractatus Logico-Philosophicus: "...Only in the context of a proposition has a name meaning." A highly confusing term is ''gain''. For example, the sentence "the gain of a system should be doubled", without context, means close to nothing. * It may mean that the ratio of the output voltage of an electric circuit to the input voltage should be doubled. * It may mean that the ratio of the output power of an electric or optical circuit to the input power should be doubled. * It may mean that the gain of the laser medium should be doubled, for example, doubling the population of the upper laser level in a quasi-two level system (assuming negligible absorption of the ground-state). The term ''intensity'' is ambiguous when applied to light. The term can refer to any of
irradiance In radiometry, irradiance is the radiant flux ''received'' by a ''surface'' per unit area. The SI unit of irradiance is the watt per square metre (W⋅m−2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) is often used ...
, luminous intensity, radiant intensity, or radiance, depending on the background of the person using the term. Also, confusions may be related with the use of atomic percent as measure of concentration of a dopant, or resolution of an imaging system, as measure of the size of the smallest detail which still can be resolved at the background of statistical noise. See also
Accuracy and precision Accuracy and precision are two measures of ''observational error''. ''Accuracy'' is how close a given set of measurements ( observations or readings) are to their ''true value'', while ''precision'' is how close the measurements are to each oth ...
and its talk. The
Berry paradox The Berry paradox is a self-referential paradox arising from an expression like "The smallest positive integer not definable in under sixty letters" (a phrase with fifty-seven letters). Bertrand Russell, the first to discuss the paradox in print, ...
arises as a result of systematic ambiguity in the meaning of terms such as "definable" or "nameable". Terms of this kind give rise to
vicious circle A vicious circle (or cycle) is a complex chain of events that reinforces itself through a feedback loop, with detrimental results. It is a system with no tendency toward equilibrium (social, economic, ecological, etc.), at least in the short r ...
fallacies. Other terms with this type of ambiguity are: satisfiable, true, false, function, property, class, relation, cardinal, and ordinal.


Mathematical interpretation of ambiguity

In mathematics and logic, ambiguity can be considered to be an instance of the logical concept of underdetermination—for example, X=Y leaves open what the value of ''X'' is—while its opposite is a self-contradiction, also called inconsistency,
paradoxicalness A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically u ...
, or
oxymoron An oxymoron (usual plural oxymorons, more rarely oxymora) is a figure of speech that juxtaposes concepts with opposing meanings within a word or phrase that creates an ostensible self-contradiction. An oxymoron can be used as a rhetorical devi ...
, or in mathematics an
inconsistent system In mathematics and particularly in algebra, a system of equations (either linear or nonlinear) is called consistent if there is at least one set of values for the unknowns that satisfies each equation in the system—that is, when substituted ...
—such as X=2, X=3, which has no solution. Logical ambiguity and self-contradiction is analogous to visual ambiguity and impossible objects, such as the Necker cube and impossible cube, or many of the drawings of M. C. Escher.


Constructed language

Some languages have been created with the intention of avoiding ambiguity, especially lexical ambiguity. Lojban and Loglan are two related languages which have been created for this, focusing chiefly on syntactic ambiguity as well. The languages can be both spoken and written. These languages are intended to provide a greater technical precision over big natural languages, although historically, such attempts at language improvement have been criticized. Languages composed from many diverse sources contain much ambiguity and inconsistency. The many exceptions to
syntax In linguistics, syntax () is the study of how words and morphemes combine to form larger units such as phrases and sentences. Central concerns of syntax include word order, grammatical relations, hierarchical sentence structure ( constituency) ...
and
semantic Semantics (from grc, σημαντικός ''sēmantikós'', "significant") is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and comput ...
rules are time-consuming and difficult to learn.


Biology

In structural biology, ambiguity has been recognized as a problem for studying protein conformations. The analysis of a protein three-dimensional structure consists in dividing the macromolecule into subunits called domains. The difficulty of this task arises from the fact that different definitions of what a domain is can be used (e.g. folding autonomy, function, thermodynamic stability, or domain motions), which sometimes results in a single protein having different—yet equally valid—domain assignments.


Christianity and Judaism

Christianity and Judaism employ the concept of paradox synonymously with "ambiguity". Many Christians and Jews endorse Rudolf Otto's description of the sacred as 'mysterium tremendum et fascinans', the awe-inspiring mystery which fascinates humans. The apocryphal
Book of Judith The Book of Judith is a deuterocanonical book, included in the Septuagint and the Catholic and Eastern Orthodox Christian Old Testament of the Bible, but excluded from the Hebrew canon and assigned by Protestants to the apocrypha. It tells ...
is noted for the "ingenious ambiguity" expressed by its heroine e.g. she says to the villain of the story, Holofernes, "my lord will not fail to achieve his purposes". The orthodox Catholic writer
G. K. Chesterton Gilbert Keith Chesterton (29 May 1874 – 14 June 1936) was an English writer, philosopher, Christian apologist, and literary and art critic. He has been referred to as the "prince of paradox". Of his writing style, ''Time'' observed: "Wh ...
regularly employed paradox to tease out the meanings in common concepts which he found ambiguous or to reveal meaning often overlooked or forgotten in common phrases: the title of one of his most famous books, ''Orthodoxy'' (1908), itself employed such a paradox.


Music

In music, pieces or sections which confound expectations and may be or are interpreted simultaneously in different ways are ambiguous, such as some polytonality,
polymeter In music, metre ( Commonwealth spelling) or meter (American spelling) refers to regularly recurring patterns and accents such as bars and beats. Unlike rhythm, metric onsets are not necessarily sounded, but are nevertheless implied by the perfo ...
, other ambiguous meters or rhythms, and ambiguous phrasing, or (Stein 2005, p.79) any aspect of music. The music of Africa is often purposely ambiguous. To quote Sir Donald Francis Tovey (1935, p.195), "Theorists are apt to vex themselves with vain efforts to remove uncertainty just where it has a high aesthetic value."


Visual art

In visual art, certain images are visually ambiguous, such as the Necker cube, which can be interpreted in two ways. Perceptions of such objects remain stable for a time, then may flip, a phenomenon called multistable perception. The opposite of such ambiguous images are impossible objects. Pictures or photographs may also be ambiguous at the semantic level: the visual image is unambiguous, but the meaning and narrative may be ambiguous: is a certain facial expression one of excitement or fear, for instance?


Social psychology and the bystander effect

In social psychology, ambiguity is a factor used in determining peoples' responses to various situations. High levels of ambiguity in an emergency (e.g. an unconscious man lying on a park bench) make witnesses less likely to offer any sort of assistance, due to the fear that they may have misinterpreted the situation and acted unnecessarily. Alternately, non-ambiguous emergencies (e.g. an injured person verbally asking for help) elicit more consistent intervention and assistance. With regard to the bystander effect, studies have shown that emergencies deemed ambiguous trigger the appearance of the classic bystander effect (wherein more witnesses decrease the likelihood of any of them helping) far more than non-ambiguous emergencies.


Computer science

In computer science, the
SI prefix The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. E ...
es kilo-, mega- and giga- were historically used in certain contexts to mean either the first three powers of 1024 (1024, 10242 and 10243) contrary to the metric system in which these units unambiguously mean one thousand, one million, and one billion. This usage is particularly prevalent with electronic memory devices (e.g.
DRAM Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell, usually consisting of a tiny capacitor and a transistor, both typically based on metal-oxid ...
) addressed directly by a binary machine register where a decimal interpretation makes no practical sense. Subsequently, the Ki, Mi, and Gi prefixes were introduced so that binary prefixes could be written explicitly, also rendering k, M, and G ''unambiguous'' in texts conforming to the new standard—this led to a ''new'' ambiguity in engineering documents lacking outward trace of the binary prefixes (necessarily indicating the new style) as to whether the usage of k, M, and G remains ambiguous (old style) or not (new style). 1 M (where M is ambiguously 1,000,000 or 1,048,576) is ''less'' uncertain than the engineering value 1.0e6 (defined to designate the interval 950,000 to 1,050,000). As non-volatile storage devices begin to exceed 1 GB in capacity (where the ambiguity begins to routinely impact the second significant digit), GB and TB almost always mean 109 and 1012 bytes.


See also


References


External links

* * * *
Collection of Ambiguous or Inconsistent/Incomplete StatementsLeaving out ambiguities when writing
{{Formal semantics Semantics Mathematical notation Concepts in epistemology Barriers to critical thinking Formal semantics (natural language)