ACO2
   HOME

TheInfoList



OR:

Aconitase 2, mitochondrial is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
that in humans is encoded by the ACO2
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
.


Structure

The secondary structure of ACO2 consists of numerous alternating alpha helices and beta sheets (SCOP classification: α/β alternating). The tertiary structure reveals that the active site is buried in the middle of the enzyme, and, since there is only one subunit, there is no quaternary structure. Aconitase consists of four domains: three of the domains are tightly compact, and the fourth domain is more flexible, allowing for conformational changes. The ACO2 protein contains a 4Fe-4S iron-sulfur cluster. This iron sulfur cluster does not have the typical function of participating in oxidation-reduction reactions, but rather facilitates the elimination of the citrate hydroxyl group by holding the group in a certain conformation and orientation. It is at this 4Fe-4S site that citrate or isocitrate binds to initiate catalysis. The rest of the active site is made up of the following residues: Gln72, Asp100, His101, Asp165, Ser166, His167, His147, Glu262, Asn258, Cys358, Cys421, Cys424, Cys358, Cys421, Asn446, Arg447, Arg452, Asp568, Ser642, Ser643, Arg644, Arg580. Their functions have yet to be elucidated.


Function

The protein encoded by this gene belongs to the
aconitase Aconitase (aconitate hydratase; ) is an enzyme that catalyses the stereo-specific isomerization of citrate to isocitrate via ''cis''- aconitate in the tricarboxylic acid cycle, a non-redox-active process. Image:Citrate wpmp.png, Image:Cis- ...
/IPM isomerase family. It is an enzyme that catalyzes the interconversion of
citrate Citric acid is an organic compound with the chemical formula HOC(CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in t ...
to
isocitrate Isocitric acid is a structural isomer of citric acid. Since citric acid and isocitric acid are structural isomers, they share similar physical and chemical properties. Due to these similar properties, it is difficult to separate the isomers. Salt ...
via cis-aconitate in the second step of the
TCA cycle The citric acid cycle (CAC)—also known as the Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins ...
. This protein is encoded in the nucleus and functions in the
mitochondrion A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used ...
. It was found to be one of the mitochondrial matrix proteins that are preferentially degraded by the serine protease 15 ( PRSS15), also known as Lon protease, after oxidative modification.


Mechanism

While both forms of aconitases have similar functions, most studies focus on ACO2. The iron-sulfur (4Fe-4S) cofactor is held in place by the sulfur atoms on Cys385, Cys448, and Cys451, which are bind to three of the four available iron atoms. A fourth iron atom is included in the cluster together with a water molecule when the enzyme is activated. This fourth iron atom binds to either one, two, or three partners; in this reaction, oxygen atoms belonging to outside metabolites are always involved. When ACO2 is not bound to a substrate, the iron-sulfur cluster is bound to a hydroxyl group through an interaction with one of the iron molecules. When the substrate binds, the bound hydroxyl becomes protonated. A hydrogen bond forms between His101 and the protonated hydroxyl, which allows the hydroxyl to form a water molecule. Alternatively, the proton could be donated by His167 as this histidine is hydrogen bonded to a H2O molecule. His167 is also hydrogen bonded to the bound H2O in the cluster. Both His101 and His167 are paired with carboxylates Asp100 and Glu262, respectively, and are likely to be protonated. The conformational change associated with substrate binding reorients the cluster. The residue that removes a proton from citrate or isocitrate is Ser642. This causes the cis-Aconitate intermediate, which is a direct result of the deprotonation. Then, there is a rehydration of the double bond of cis-aconitate to form the product.


Clinical significance

A serious ailment associated with aconitase is known as aconitase deficiency.Orphanet, "Aconitase deficiency," April 2008, http://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=43115 It is caused by a mutation in the gene for iron-sulfur cluster scaffold protein ( ISCU), which helps build the Fe-S cluster on which the activity of aconitase depends. The main symptoms are
myopathy In medicine, myopathy is a disease of the muscle in which the muscle fibers do not function properly. This results in muscular weakness. ''Myopathy'' means muscle disease (Greek : myo- ''muscle'' + patheia '' -pathy'' : ''suffering''). This meani ...
and
exercise intolerance Exercise intolerance is a condition of inability or decreased ability to perform physical exercise at the normally expected level or duration for people of that age, size, sex, and muscle mass. It also includes experiences of unusually severe post ...
; physical strain is lethal for some patients because it can lead to
circulatory shock Shock is the state of insufficient blood flow to the tissues of the body as a result of problems with the circulatory system. Initial symptoms of shock may include weakness, fast heart rate, fast breathing, sweating, anxiety, and increased thi ...
. There are no known treatments for aconitase deficiency. Another disease associated with aconitase is
Friedreich's ataxia Friedreich's ataxia (FRDA or FA) is an autosomal-recessive genetic disease that causes difficulty walking, a loss of sensation in the arms and legs, and impaired speech that worsens over time. Symptoms generally start between 5 and 20 year ...
(FRDA), which is caused when the Fe-S proteins in aconitase and
succinate dehydrogenase Succinate dehydrogenase (SDH) or succinate-coenzyme Q reductase (SQR) or respiratory complex II is an enzyme complex, found in many bacterial cells and in the inner mitochondrial membrane of eukaryotes. It is the only enzyme that participates i ...
have decreased activity. A proposed mechanism for this connection is that decreased Fe-S activity in aconitase and succinate dehydrogenase is correlated with excess iron concentration in the mitochondria and insufficient iron in the cytoplasm, disrupting
iron homeostasis Human iron metabolism is the set of chemical reactions that maintain human homeostasis of iron at the systemic and cellular level. Iron is both necessary to the body and potentially toxic. Controlling iron levels in the body is a critically imp ...
. This deviance from homeostasis causes FRDA, a
neurodegenerative disease A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic ...
for which no effective treatments have been found. Finally, aconitase is thought to be associated with
diabetes Diabetes, also known as diabetes mellitus, is a group of metabolic disorders characterized by a high blood sugar level ( hyperglycemia) over a prolonged period of time. Symptoms often include frequent urination, increased thirst and increased ap ...
. Although the exact connection is still being determined, multiple theories exist. In a study of organs from mice with alloxan diabetes (experimentally induced diabetes"Alloxan Diabetes - Medical Definition," Stedman's Medical Dictionary, 2006 Lippincott Williams & Wilkins, http://www.medilexicon.com/medicaldictionary.php?t=24313 ) and genetic diabetes, lower aconitase activity was found to decrease the rates of metabolic reactions involving citrate, pyruvate, and malate. In addition, citrate concentration was observed to be unusually high. Since these abnormal data were found in diabetic mice, the study concluded that low aconitase activity is likely correlated with genetic and alloxan diabetes. Another theory is that, in diabetic hearts, accelerated phosphorylation of heart aconitase by protein kinase C causes aconitase to speed up the final step of its reverse reaction relative to its forward reaction. That is, it converts isocitrate back to ''cis''-aconitate more rapidly than usual, but the forward reaction proceeds at the usual rate. This imbalance may contribute to disrupted metabolism in diabetics. The mitochondrial form of aconitase, ACO2, is correlated with many diseases, as it is directly involved in the conversion of
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using ...
into ATP, or the central metabolic pathway. Decreased expression of ACO2 in gastric cancer cells has been associated with a poor prognosis; this effect has also been seen in prostate cancer cells. A few treatments have been identified in vitro to induce greater ACO2 expression, including exposing the cells to hypoxia and the element
manganese Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
.


References


External links

*


Further reading

* * * * * * * * * {{Portal bar, Biology, border=no EC 4.2.1