Zig-zag Lemma
   HOME





Zig-zag Lemma
In mathematics, particularly homological algebra, the zig-zag lemma asserts the existence of a particular long exact sequence in the homology groups of certain chain complexes. The result is valid in every abelian category. Statement In an abelian category (such as the category of abelian groups or the category of vector spaces over a given field (algebra), field), let (\mathcal,\partial_), (\mathcal,\partial_') and (\mathcal,\partial_'') be chain complexes that fit into the following short exact sequence: : 0 \longrightarrow \mathcal \mathrel \mathcal \mathrel \mathcal\longrightarrow 0 Such a sequence is shorthand for the following commutative diagram: image:complex_ses_diagram.png, commutative diagram representation of a short exact sequence of chain complexes where the rows are exact sequences and each column is a chain complex. The zig-zag lemma asserts that there is a collection of boundary maps : \delta_n : H_n(\mathcal) \longrightarrow H_(\mathcal), that makes t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Short Exact Sequence
In mathematics, an exact sequence is a sequence of morphisms between objects (for example, Group (mathematics), groups, Ring (mathematics), rings, Module (mathematics), modules, and, more generally, objects of an abelian category) such that the Image (mathematics), image of one morphism equals the kernel (algebra), kernel of the next. Definition In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and group homomorphisms is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other algebraic structures. For example, one could have an exact sequence of vector spaces and linear maps, or of modules and module homomorphisms. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mayer–Vietoris Sequence
In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces. The result is due to two Austrian mathematicians, Walther Mayer and Leopold Vietoris. The method consists of splitting a space into subspaces, for which the homology or cohomology groups may be easier to compute. The sequence relates the (co)homology groups of the space to the (co)homology groups of the subspaces. It is a natural long exact sequence, whose entries are the (co)homology groups of the whole space, the direct sum of the (co)homology groups of the subspaces, and the (co)homology groups of the intersection of the subspaces. The Mayer–Vietoris sequence holds for a variety of cohomology and homology theories, including simplicial homology and singular cohomology. In general, the sequence holds for those theories satisfying the Eilenberg–Steenrod axioms, and it has variations for both ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE