HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an exact sequence is a sequence of
morphisms In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
between objects (for example, groups, rings, modules, and, more generally, objects of an
abelian category In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category o ...
) such that the
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of one morphism equals the
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learnin ...
of the next.


Definition

In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and
group homomorphism In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) whe ...
s is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other
algebraic structure In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
s. For example, one could have an exact sequence of
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s and
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
s, or of modules and
module homomorphism In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if ''M'' and ''N'' are left modules over a ring ''R'', then a function f: M \to N is called an ''R''-''module homomorphism'' or an ' ...
s. More generally, the notion of an exact sequence makes sense in any
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
with
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learnin ...
s and
cokernel The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the nam ...
s, and more specially in
abelian categories In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of a ...
, where it is widely used.


Simple cases

To understand the definition, it is helpful to consider relatively simple cases where the sequence is of group homomorphisms, is finite, and begins or ends with the
trivial group In mathematics, a trivial group or zero group is a group that consists of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usu ...
. Traditionally, this, along with the single identity element, is denoted 0 (additive notation, usually when the groups are abelian), or denoted 1 (multiplicative notation). * Consider the sequence 0 → ''A'' → ''B''. The image of the leftmost map is 0. Therefore the sequence is exact if and only if the rightmost map (from ''A'' to ''B'') has kernel ; that is, if and only if that map is a
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphis ...
(injective, or one-to-one). * Consider the dual sequence ''B'' → ''C'' → 0. The kernel of the rightmost map is ''C''. Therefore the sequence is exact if and only if the image of the leftmost map (from ''B'' to ''C'') is all of ''C''; that is, if and only if that map is an
epimorphism In category theory, an epimorphism is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f \implies g_1 = g_2. Epimorphisms are categorical analo ...
(surjective, or onto). * Therefore, the sequence 0 → ''X'' → ''Y'' → 0 is exact if and only if the map from ''X'' to ''Y'' is both a monomorphism and epimorphism (that is, a
bimorphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Alth ...
), and so usually an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
from ''X'' to ''Y'' (this always holds in
exact categories In mathematics, specifically in category theory, an exact category is a category equipped with short exact sequences. The concept is due to Daniel Quillen and is designed to encapsulate the properties of short exact sequences in abelian categorie ...
like Set).


Short exact sequence

Short exact sequences are exact sequences of the form :0 \to A \xrightarrow B \xrightarrow C \to 0. As established above, for any such short exact sequence, ''f'' is a monomorphism and ''g'' is an epimorphism. Furthermore, the image of ''f'' is equal to the kernel of ''g''. It is helpful to think of ''A'' as a
subobject In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory ...
of ''B'' with ''f'' embedding ''A'' into ''B'', and of ''C'' as the corresponding factor object (or
quotient In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
), ''B''/''A'', with ''g'' inducing an isomorphism :C \cong B/\operatorname(f) = B/\operatorname(g) The short exact sequence :0 \to A \xrightarrow B \xrightarrow C \to 0\, is called
split Split(s) or The Split may refer to: Places * Split, Croatia, the largest coastal city in Croatia * Split Island, Canada, an island in the Hudson Bay * Split Island, Falkland Islands * Split Island, Fiji, better known as Hạfliua Arts, enter ...
if there exists a homomorphism ''h'' : ''C'' → ''B'' such that the composition ''g'' ∘ ''h'' is the identity map on ''C''. It follows that if these are
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s, ''B'' is isomorphic to the
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
of ''A'' and ''C'': :B \cong A \oplus C.


Long exact sequence

A general exact sequence is sometimes called a long exact sequence, to distinguish from the special case of a short exact sequence. A long exact sequence is equivalent to a family of short exact sequences in the following sense: Given a long sequence with ''n ≥'' 2, we can split it up into the short sequences where K_i = \operatorname(f_i) for every i. By construction, the sequences ''(2)'' are exact at the K_i's (regardless of the exactness of ''(1)''). Furthermore, ''(1)'' is a long exact sequence if and only if ''(2)'' are all short exact sequences. See
weaving lemma Weaving is a method of textile production in which two distinct sets of yarns or threads are interlaced at right angles to form a fabric or cloth. Other methods are knitting, crocheting, felting, and braiding or plaiting. The longitudinal t ...
for details on how to re-form the long exact sequence from the short exact sequences.


Examples


Integers modulo two

Consider the following sequence of abelian groups: :\mathbf \mathrel \mathbf \twoheadrightarrow \mathbf/2\mathbf The first homomorphism maps each element ''i'' in the set of integers Z to the element 2''i'' in Z. The second homomorphism maps each element ''i'' in Z to an element ''j'' in the quotient group; that is, . Here the hook arrow \hookrightarrow indicates that the map 2× from Z to Z is a monomorphism, and the two-headed arrow \twoheadrightarrow indicates an epimorphism (the map mod 2). This is an exact sequence because the image 2Z of the monomorphism is the kernel of the epimorphism. Essentially "the same" sequence can also be written as :2\mathbf \mathrel \mathbf \twoheadrightarrow \mathbf/2\mathbf In this case the monomorphism is 2''n'' ↦ 2''n'' and although it looks like an identity function, it is not onto (that is, not an epimorphism) because the odd numbers don't belong to 2Z. The image of 2Z through this monomorphism is however exactly the same subset of Z as the image of Z through ''n'' ↦ 2''n'' used in the previous sequence. This latter sequence does differ in the concrete nature of its first object from the previous one as 2Z is not the same set as Z even though the two are isomorphic as groups. The first sequence may also be written without using special symbols for monomorphism and epimorphism: :0 \to \mathbf \mathrel \mathbf \longrightarrow \mathbf/2\mathbf \to 0 Here 0 denotes the trivial group, the map from Z to Z is multiplication by 2, and the map from Z to the
factor group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For exam ...
Z/2Z is given by reducing integers
modulo In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation. Given two positive numbers and , mo ...
2. This is indeed an exact sequence: * the image of the map 0 → Z is , and the kernel of multiplication by 2 is also , so the sequence is exact at the first Z. * the image of multiplication by 2 is 2Z, and the kernel of reducing modulo 2 is also 2Z, so the sequence is exact at the second Z. * the image of reducing modulo 2 is Z/2Z, and the kernel of the zero map is also Z/2Z, so the sequence is exact at the position Z/2Z. The first and third sequences are somewhat of a special case owing to the infinite nature of Z. It is not possible for a
finite group In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving tra ...
to be mapped by inclusion (that is, by a monomorphism) as a proper subgroup of itself. Instead the sequence that emerges from the
first isomorphism theorem In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship among quotients, homomorphisms, and subobjects. Versions of the theorems exist for ...
is :1 \to N \to G \to G/N \to 1 (here the trivial group is denoted 1, as these groups are not supposed to be abelian). As a more concrete example of an exact sequence on finite groups: :1 \to C_n \to D_ \to C_2 \to 1 where C_n is the
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
of order ''n'' and D_ is the
dihedral group In mathematics, a dihedral group is the group (mathematics), group of symmetry, symmetries of a regular polygon, which includes rotational symmetry, rotations and reflection symmetry, reflections. Dihedral groups are among the simplest example ...
of order 2''n'', which is a non-abelian group.


Intersection and sum of modules

Let and be two ideals of a ring . Then :0 \to I\cap J \to I\oplus J \to I + J \to 0 is an exact sequence of -modules, where the module homomorphism I\cap J \to I\oplus J maps each element of I\cap J to the element of the
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
I\oplus J, and the homomorphism I\oplus J \to I+J maps each element of I\oplus J to . These homomorphisms are restrictions of similarly defined homomorphisms that form the short exact sequence :0\to R \to R\oplus R \to R \to 0 Passing to
quotient module In algebra, given a module and a submodule, one can construct their quotient module. This construction, described below, is very similar to that of a quotient vector space. It differs from analogous quotient constructions of rings and groups ...
s yields another exact sequence :0\to R/(I\cap J) \to R/I \oplus R/J \to R/(I+J) \to 0


Properties

The
splitting lemma In mathematics, and more specifically in homological algebra, the splitting lemma states that in any abelian category, the following statements are equivalent for a short exact sequence : 0 \longrightarrow A \mathrel B \mathrel C \longrightarro ...
states that, for a short exact sequence :0 \to A \;\xrightarrow\; B \;\xrightarrow\; C \to 0, the following conditions are equivalent. *There exists a morphism such that is the identity on . *There exists a morphism such that is the identity on . *There exists a morphism such that is the
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
of and . For non-commutative groups, the splitting lemma does not apply, and one has only the equivalence between the two last conditions, with "the direct sum" replaced with "a
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol . There are two closely related concepts of semidirect product: * an ''inner'' sem ...
". In both cases, one says that such a short exact sequence ''splits''. The
snake lemma The snake lemma is a tool used in mathematics, particularly homological algebra, to construct long exact sequences. The snake lemma is valid in every abelian category and is a crucial tool in homological algebra and its applications, for instance ...
shows how a
commutative diagram 350px, The commutative diagram used in the proof of the five lemma In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the s ...
with two exact rows gives rise to a longer exact sequence. The nine lemma is a special case. The
five lemma In mathematics, especially homological algebra and other applications of abelian category theory, the five lemma is an important and widely used lemma (mathematics), lemma about commutative diagrams. The five lemma is not only valid for abelian cat ...
gives conditions under which the middle map in a commutative diagram with exact rows of length 5 is an isomorphism; the short five lemma is a special case thereof applying to short exact sequences.


Weaving lemma

The importance of short exact sequences is underlined by the fact that every exact sequence results from "weaving together" several overlapping short exact sequences. Consider for instance the exact sequence :A_1\to A_2\to A_3\to A_4\to A_5\to A_6 which implies that there exist objects ''Ck'' in the category such that :C_k \cong \ker (A_k\to A_) \cong \operatorname (A_\to A_k). Suppose in addition that the cokernel of each morphism exists, and is isomorphic to the image of the next morphism in the sequence: :C_k \cong \operatorname (A_\to A_) (This is true for a number of interesting categories, including any abelian category such as the abelian groups; but it is not true for all categories that allow exact sequences, and in particular is not true for the
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories The ...
, in which coker(''f'') : ''G'' → ''H'' is not ''H''/im(''f'') but H / ^H, the quotient of ''H'' by the
conjugate closure In group theory, the normal closure of a subset S of a group G is the smallest normal subgroup of G containing S. Properties and description Formally, if G is a group and S is a subset of G, the normal closure \operatorname_G(S) of S is the ...
of im(''f'').) Then we obtain a commutative diagram in which all the diagonals are short exact sequences: : The only portion of this diagram that depends on the cokernel condition is the object C_7 and the final pair of morphisms A_6 \to C_7\to 0. If there exists any object A_ and morphism A_k \to A_ such that A_ \to A_k \to A_ is exact, then the exactness of 0 \to C_k \to A_k \to C_ \to 0 is ensured. Again taking the example of the category of groups, the fact that im(''f'') is the kernel of some homomorphism on ''H'' implies that it is a
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
, which coincides with its conjugate closure; thus coker(''f'') is isomorphic to the image ''H''/im(''f'') of the next morphism. Conversely, given any list of overlapping short exact sequences, their middle terms form an exact sequence in the same manner.


Applications of exact sequences

In the theory of abelian categories, short exact sequences are often used as a convenient language to talk about subobjects and factor objects. The
extension problem In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence :1\to N\;\ove ...
is essentially the question "Given the end terms ''A'' and ''C'' of a short exact sequence, what possibilities exist for the middle term ''B''?" In the category of groups, this is equivalent to the question, what groups ''B'' have ''A'' as a normal subgroup and ''C'' as the corresponding factor group? This problem is important in the classification of groups. See also
Outer automorphism group In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has ...
. Notice that in an exact sequence, the composition ''f''''i''+1 ∘ ''f''''i'' maps ''A''''i'' to 0 in ''A''''i''+2, so every exact sequence is a
chain complex In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is contained in the kernel o ...
. Furthermore, only ''f''''i''-images of elements of ''A''''i'' are mapped to 0 by ''f''''i''+1, so the homology of this chain complex is trivial. More succinctly: :Exact sequences are precisely those chain complexes which are acyclic. Given any chain complex, its homology can therefore be thought of as a measure of the degree to which it fails to be exact. If we take a series of short exact sequences linked by chain complexes (that is, a short exact sequence of chain complexes, or from another point of view, a chain complex of short exact sequences), then we can derive from this a long exact sequence (that is, an exact sequence indexed by the natural numbers) on homology by application of the
zig-zag lemma In mathematics, particularly homological algebra, the zig-zag lemma asserts the existence of a particular long exact sequence in the homology groups of certain chain complexes. The result is valid in every abelian category. Statement In an abel ...
. It comes up in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
in the study of
relative homology In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intu ...
; the
Mayer–Vietoris sequence In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces. The result is due to two Austrian mathematicians, Walther Mayer an ...
is another example. Long exact sequences induced by short exact sequences are also characteristic of
derived functor In mathematics, certain functors may be ''derived'' to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics. Motivation It was noted in vari ...
s.
Exact functor In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much o ...
s are
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
s that transform exact sequences into exact sequences.


References

;Citations ;Sources * * {{Topology Homological algebra Additive categories