Topological Vector Lattice
   HOME
*





Topological Vector Lattice
In mathematics, specifically in functional analysis and order theory, a topological vector lattice is a Hausdorff topological vector space (TVS) X that has a partial order \,\leq\, making it into vector lattice that is possesses a neighborhood base at the origin consisting of solid sets. Ordered vector lattices have important applications in spectral theory. Definition If X is a vector lattice then by the vector lattice operations we mean the following maps: # the three maps X to itself defined by x \mapsto, x , , x \mapsto x^+, x \mapsto x^, and # the two maps from X \times X into X defined by (x, y) \mapsto \sup_ \ and(x, y) \mapsto \inf_ \. If X is a TVS over the reals and a vector lattice, then X is locally solid if and only if (1) its positive cone is a normal cone, and (2) the vector lattice operations are continuous. If X is a vector lattice and an ordered topological vector space that is a Fréchet space in which the positive cone is a normal cone, then th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems (compare with numeral systems) in general (although one usually is also interested in the actual difference ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Vector Space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also Continuous function, continuous functions. Such a topology is called a and every topological vector space has a Uniform space, uniform topological structure, allowing a notion of uniform convergence and Complete topological vector space, completeness. Some authors also require that the space is a Hausdorff space (although this article does not). One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs. Many topological vec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Order
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', or ''x'' and ''y'' are ''incompar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vector Lattice
In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice. Riesz spaces are named after Frigyes Riesz who first defined them in his 1928 paper ''Sur la décomposition des opérations fonctionelles linéaires''. Riesz spaces have wide-ranging applications. They are important in measure theory, in that important results are special cases of results for Riesz spaces. For example, the Radon–Nikodym theorem follows as a special case of the Freudenthal spectral theorem. Riesz spaces have also seen application in mathematical economics through the work of Greek-American economist and mathematician Charalambos D. Aliprantis. Definition Preliminaries If X is an ordered vector space (which by definition is a vector space over the reals) and if S is a subset of X then an element b \in X is an upper bound (resp. lower bound) of S if s \leq b (resp. s \geq b) for all s \in S. An element ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Solid Set
In mathematics, specifically in order theory and functional analysis, a subset S of a vector lattice is said to be solid and is called an ideal if for all s \in S and x \in X, if , x, \leq , s, then x \in S. An ordered vector space whose order is Archimedean is said to be ''Archimedean ordered''. If S\subseteq X then the ideal generated by S is the smallest ideal in X containing S. An ideal generated by a singleton set is called a principal ideal in X. Examples The intersection of an arbitrary collection of ideals in X is again an ideal and furthermore, X is clearly an ideal of itself; thus every subset of X is contained in a unique smallest ideal. In a locally convex vector lattice X, the polar Polar may refer to: Geography Polar may refer to: * Geographical pole, either of two fixed points on the surface of a rotating body or planet, at 90 degrees from the equator, based on the axis around which a body rotates * Polar climate, the c ... of every solid neighborhood ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectral Theory
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter. Mathematical background The name ''spectral theory'' was introduced by David Hilbert in his original formulation of Hilbert space theory, which was cast in terms of quadratic forms in infinitely many variables. The original spectral theorem was therefore conceived as a version of the theorem on principal axes of an ellipsoid, in an infinite-dimensional setting. The later discovery in quantum mechanics that spectral theory could explain features of atomic spectra was therefore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Cone (functional Analysis)
In mathematics, specifically in order theory and functional analysis, if C is a cone at the origin in a topological vector space X such that 0 \in C and if \mathcal is the neighborhood filter at the origin, then C is called normal if \mathcal = \left \mathcal \rightC, where \left \mathcal \rightC := \left\ and where for any subset S \subseteq X, C := (S + C) \cap (S - C) is the C-saturatation of S. Normal cones play an important role in the theory of ordered topological vector spaces and topological vector lattices. Characterizations If C is a cone in a TVS X then for any subset S \subseteq X let C := \left(S + C\right) \cap \left(S - C\right) be the C-saturated hull of S \subseteq X and for any collection \mathcal of subsets of X let \left \mathcal \rightC := \left\. If C is a cone in a TVS X then C is normal if \mathcal = \left \mathcal \rightC, where \mathcal is the neighborhood filter at the origin. If \mathcal is a collection of subsets of X and if \mathcal is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordered Topological Vector Space
In mathematics, specifically in functional analysis and order theory, an ordered topological vector space, also called an ordered TVS, is a topological vector space (TVS) ''X'' that has a partial order ≤ making it into an ordered vector space whose positive cone C := \left\ is a closed subset of ''X''. Ordered TVS have important applications in spectral theory. Normal cone If ''C'' is a cone in a TVS ''X'' then ''C'' is normal if \mathcal = \left \mathcal \right, where \mathcal is the neighborhood filter at the origin, \left \mathcal \right = \left\, and := \left(U + C\right) \cap \left(U - C\right) is the ''C''-saturated hull of a subset ''U'' of ''X''. If ''C'' is a cone in a TVS ''X'' (over the real or complex numbers), then the following are equivalent: # ''C'' is a normal cone. # For every filter \mathcal in ''X'', if \lim \mathcal = 0 then \lim \left \mathcal \right = 0. # There exists a neighborhood base \mathcal in ''X'' such that B \in \mathcal implies \left ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fréchet Space
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces (normed vector spaces that are complete with respect to the metric induced by the norm). All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically Banach spaces. A Fréchet space X is defined to be a locally convex metrizable topological vector space (TVS) that is complete as a TVS, meaning that every Cauchy sequence in X converges to some point in X (see footnote for more details).Here "Cauchy" means Cauchy with respect to the canonical uniformity that every TVS possess. That is, a sequence x_ = \left(x_m\right)_^ in a TVS X is Cauchy if and only if for all neighborhoods U of the origin in X, x_m - x_n \in U whenever m and n are sufficiently large. Note that this definition of a Cau ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordered Vector Space
In mathematics, an ordered vector space or partially ordered vector space is a vector space equipped with a partial order that is compatible with the vector space operations. Definition Given a vector space ''X'' over the real numbers R and a preorder ≤ on the set ''X'', the pair is called a preordered vector space and we say that the preorder ≤ is compatible with the vector space structure of ''X'' and call ≤ a vector preorder on ''X'' if for all ''x'', ''y'', ''z'' in ''X'' and ''λ'' in R with the following two axioms are satisfied # implies # implies . If ≤ is a partial order compatible with the vector space structure of ''X'' then is called an ordered vector space and ≤ is called a vector partial order on ''X''. The two axioms imply that translations and positive homotheties are automorphisms of the order structure and the mapping is an isomorphism to the dual order structure. Ordered vector spaces are ordered groups under their addition op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]