Thick Set
   HOME





Thick Set
In mathematics, a thick set is a set of integers that contains arbitrarily long intervals. That is, given a thick set T, for every p \in \mathbb, there is some n \in \mathbb such that \ \subset T. Examples Trivially \mathbb is a thick set. Other well-known sets that are thick include non- primes and non-squares. Thick sets can also be sparse, for example: \bigcup_ \. Generalisations The notion of a thick set can also be defined more generally for a semigroup, as follows. Given a semigroup (S, \cdot) and A \subseteq S, A is said to be ''thick'' if for any finite subset F \subseteq S, there exists x \in S such that F \cdot x = \ \subseteq A. It can be verified that when the semigroup under consideration is the natural numbers \mathbb{N} with the addition operation +, this definition is equivalent to the one given above. See also * Cofinal (mathematics) * Cofiniteness * Ergodic Ramsey theory * Piecewise syndetic set * Syndetic set References * J. McLeod,Some Notions of Siz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cofinal (mathematics)
In mathematics, a subset B \subseteq A of a preordered set (A, \leq) is said to be cofinal or frequent in A if for every a \in A, it is possible to find an element b in B that dominates a (formally, a\leq b). Cofinal subsets are very important in the theory of directed sets and nets, where “ cofinal subnet” is the appropriate generalization of " subsequence". They are also important in order theory, including the theory of cardinal numbers, where the minimum possible cardinality of a cofinal subset of A is referred to as the cofinality of A. Definitions Let \,\leq\, be a homogeneous binary relation on a set A. A subset B \subseteq A is said to be or with respect to \,\leq\, if it satisfies the following condition: :For every a \in A, there exists some b \in B that a \leq b. A subset that is not frequent is called . This definition is most commonly applied when (A, \leq) is a directed set, which is a preordered set with additional properties. ;Final functions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTAEditorial board of JCTB
Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. In 2020, most of the editorial board of ''JCTA'' resigned to form a new,

Vitaly Bergelson
Vitaly Bergelson (born 1950 in Kiev) is a mathematical researcher and professor at Ohio State University in Columbus, Ohio. His research focuses on ergodic theory and combinatorics. Bergelson received his Ph.D. in 1984 under Hillel Furstenberg at the Hebrew University of Jerusalem. He gave an invited address at the International Congress of Mathematicians in 2006 in Madrid. Among Bergelson's best known results is a polynomial generalization of Szemerédi's theorem. The latter provided a positive solution to the famous Erdős–Turán conjecture from 1936 stating that any set of integers of positive upper density contains arbitrarily long arithmetic progressions. In a 1996 paper Bergelson and Leibman obtained an analogous statement for "polynomial progressions". The Bergelson-Leibman theoremAlexander Soifer, Branko Grünbaum, and Cecil RousseauMathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators. Springer-Verlag, New York, 2008, ; p. 358 and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Syndetic Set
In mathematics, a syndetic set is a subset of the natural numbers having the property of "bounded gaps": that the sizes of the gaps in the sequence of natural numbers is bounded. Definition A set S \sub \mathbb is called syndetic if for some finite subset F of \mathbb :\bigcup_ (S-n) = \mathbb where S-n = \. Thus syndetic sets have "bounded gaps"; for a syndetic set S, there is an integer p=p(S) such that , a+1, a+2, ... , a+p\bigcap S \neq \emptyset for any a \in \mathbb. See also * Ergodic Ramsey theory * Piecewise syndetic set * Thick set References * * * {{cite journal , last1=Bergelson , first1=Vitaly , authorlink1=Vitaly Bergelson , last2=Hindman , first2=Neil , author-link2=Neil Hindman , title=Partition regular structures contained in large sets are abundant , journal=Journal of Combinatorial Theory The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Els ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Piecewise Syndetic Set
In mathematics, piecewise syndeticity is a notion of largeness of subsets of the natural numbers. A set S \sub \mathbb is called ''piecewise syndetic'' if there exists a finite subset ''G'' of \mathbb such that for every finite subset ''F'' of \mathbb there exists an x \in \mathbb such that :x+F \subset \bigcup_ (S-n) where S-n = \. Equivalently, ''S'' is piecewise syndetic if there is a constant ''b'' such that there are arbitrarily long intervals of \mathbb where the gaps in ''S'' are bounded by ''b''. Properties * A set is piecewise syndetic if and only if it is the intersection of a syndetic set and a thick set. * If ''S'' is piecewise syndetic then ''S'' contains arbitrarily long arithmetic progressions. * A set ''S'' is piecewise syndetic if and only if there exists some ultrafilter ''U'' which contains ''S'' and ''U'' is in the smallest two-sided ideal of \beta \mathbb, the Stone–Čech compactification of the natural numbers. * Partition regularity: if S is piecewise s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ergodic Ramsey Theory
Ergodic Ramsey theory is a branch of mathematics where problems motivated by additive combinatorics are proven using ergodic theory. History Ergodic Ramsey theory arose shortly after Endre Szemerédi's proof that a set of positive upper density contains arbitrarily long arithmetic progressions, when Hillel Furstenberg gave a new proof of this theorem using ergodic theory. It has since produced combinatorial results, some of which have yet to be obtained by other means, and has also given a deeper understanding of the structure of measure-preserving dynamical systems. Szemerédi's theorem Szemerédi's theorem is a result in arithmetic combinatorics, concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured. that every set of integers ''A'' with positive natural density contains a ''k''-term arithmetic progression for every ''k''. This conjecture, which became Szemerédi's theorem, generalizes the statement of van der Waerden's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cofiniteness
In mathematics, a cofinite subset of a set X is a subset A whose complement in X is a finite set. In other words, A contains all but finitely many elements of X. If the complement is not finite, but is countable, then one says the set is cocountable. These arise naturally when generalizing structures on finite sets to infinite sets, particularly on infinite products, as in the product topology or direct sum. This use of the prefix "" to describe a property possessed by a set's mplement is consistent with its use in other terms such as " meagre set". Boolean algebras The set of all subsets of X that are either finite or cofinite forms a Boolean algebra, which means that it is closed under the operations of union, intersection, and complementation. This Boolean algebra is the on X. In the other direction, a Boolean algebra A has a unique non-principal ultrafilter (that is, a maximal filter not generated by a single element of the algebra) if and only if there exists an inf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. When quantified, A \subseteq B is represented as \forall x \left(x \in A \Rightarrow x \in B\right). One can prove the statement A \subseteq B by applying a proof technique known as the element argument:Let sets ''A'' and ''B'' be given. To prove that A \subseteq B, # suppose that ''a'' is a particular but arbitrarily chosen element of A # show that ''a'' is an element of ''B''. The validity of this technique ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Finite Set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the ''cardinality (or the cardinal number)'' of the set. A set that is not a finite set is called an '' infinite set''. For example, the set of all positive integers is infinite: Finite sets are particularly important in combinatorics, the mathematical study of counting. Many arguments involving finite sets rely on the pigeonhole principle, which states that there cannot exist an injective function from a larger finite set to a smaller finite set. Definition and terminology Formally, a set S is called finite if there exists a bijection for some natural number n (natural numbers are defined as sets in Zermelo-Fraenkel set theory). The number n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]