Piecewise Syndetic Set
In mathematics, piecewise syndeticity is a notion of largeness of subsets of the natural numbers. A set S \sub \mathbb is called ''piecewise syndetic'' if there exists a finite subset ''G'' of \mathbb such that for every finite subset ''F'' of \mathbb there exists an x \in \mathbb such that :x+F \subset \bigcup_ (S-n) where S-n = \. Equivalently, ''S'' is piecewise syndetic if there is a constant ''b'' such that there are arbitrarily long intervals of \mathbb where the gaps in ''S'' are bounded by ''b''. Properties * A set is piecewise syndetic if and only if it is the intersection of a syndetic set and a thick set. * If ''S'' is piecewise syndetic then ''S'' contains arbitrarily long arithmetic progressions. * A set ''S'' is piecewise syndetic if and only if there exists some ultrafilter ''U'' which contains ''S'' and ''U'' is in the smallest two-sided ideal of \beta \mathbb, the Stone–Čech compactification of the natural numbers. * Partition regularity: if S is piecewise sy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Density
In number theory, natural density (also referred to as asymptotic density or arithmetic density) is one method to measure how "large" a subset of the set of natural numbers is. It relies chiefly on the probability of encountering members of the desired subset when combing through the interval as ''n '' grows large. Intuitively, it is thought that there are more positive integers than perfect squares, since every perfect square is already positive, and many other positive integers exist besides. However, the set of positive integers is not in fact larger than the set of perfect squares: both sets are infinite and countable and can therefore be put in one-to-one correspondence. Nevertheless if one goes through the natural numbers, the squares become increasingly scarce. The notion of natural density makes this intuition precise for many, but not all, subsets of the naturals (see Schnirelmann density, which is similar to natural density but defined for all subsets of \mathbb). If ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ergodic Theory
Ergodic theory (Greek: ' "work", ' "way") is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, statistical properties means properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics. Ergodic theory, like probability theory, is based on general notions of measure theory. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical system when it is allowed to run for a long time. The first result in this direction is the Poincaré recurrence theorem, which claims that almost all points in any subset of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semigroup Theory
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is ass ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pacific Journal Of Mathematics
The Pacific Journal of Mathematics is a mathematics research journal supported by several universities and research institutes, and currently published on their behalf by Mathematical Sciences Publishers, a non-profit academic publishing organisation, and the University of California, Berkeley. It was founded in 1951 by František Wolf and Edwin F. Beckenbach and has been published continuously since, with five two-issue volumes per year and 12 issues per year. Full-text PDF versions of all journal articles are available on-line via the journal's website with a subscription. The journal is incorporated as a 501(c)(3) organization. References Mathematics journals Publications established in 1951 Mathematical Sciences Publishers academic journals {{math-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTA Editorial board of JCTB Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic, [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ergodic Ramsey Theory
Ergodic Ramsey theory is a branch of mathematics where problems motivated by additive combinatorics are proven using ergodic theory. History Ergodic Ramsey theory arose shortly after Endre Szemerédi's proof that a set of positive upper density contains arbitrarily long arithmetic progressions, when Hillel Furstenberg gave a new proof of this theorem using ergodic theory. It has since produced combinatorial results, some of which have yet to be obtained by other means, and has also given a deeper understanding of the structure of measure-preserving dynamical systems. Szemerédi's theorem Szemerédi's theorem is a result in arithmetic combinatorics, concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured. that every set of integers ''A'' with positive natural density contains a ''k'' term arithmetic progression for every ''k''. This conjecture, which became Szemerédi's theorem, generalizes the statement of van der Waerden's theorem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Upper Density
In number theory, natural density (also referred to as asymptotic density or arithmetic density) is one method to measure how "large" a subset of the set of natural numbers is. It relies chiefly on the probability of encountering members of the desired subset when combing through the interval as ''n '' grows large. Intuitively, it is thought that there are more positive integers than perfect squares, since every perfect square is already positive, and many other positive integers exist besides. However, the set of positive integers is not in fact larger than the set of perfect squares: both sets are infinite and countable and can therefore be put in one-to-one correspondence. Nevertheless if one goes through the natural numbers, the squares become increasingly scarce. The notion of natural density makes this intuition precise for many, but not all, subsets of the naturals (see Schnirelmann density, which is similar to natural density but defined for all subsets of \mathbb). If an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
IP Set
In mathematics, an IP set is a set of natural numbers which contains all finite sums of some infinite set. The finite sums of a set ''D'' of natural numbers are all those numbers that can be obtained by adding up the elements of some finite nonempty subset of ''D''. The set of all finite sums over ''D'' is often denoted as FS(''D''). Slightly more generally, for a sequence of natural numbers (''n''i), one can consider the set of finite sums FS((''n''i)), consisting of the sums of all finite length subsequences of (''n''i). A set ''A'' of natural numbers is an IP set if there exists an infinite set ''D'' such that FS(''D'') is a subset of ''A''. Equivalently, one may require that ''A'' contains all finite sums FS((''n''i)) of a sequence (''n''i). Some authors give a slightly different definition of IP sets: They require that FS(''D'') equal ''A'' instead of just being a subset. The term IP set was coined by Hillel Furstenberg and Benjamin Weiss to abbreviate "infinite-dimensional ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cofiniteness
In mathematics, a cofinite subset of a set X is a subset A whose complement in X is a finite set. In other words, A contains all but finitely many elements of X. If the complement is not finite, but it is countable, then one says the set is cocountable. These arise naturally when generalizing structures on finite sets to infinite sets, particularly on infinite products, as in the product topology or direct sum. This use of the prefix "" to describe a property possessed by a set's mplement is consistent with its use in other terms such as " meagre set". Boolean algebras The set of all subsets of X that are either finite or cofinite forms a Boolean algebra, which means that it is closed under the operations of union, intersection, and complementation. This Boolean algebra is the on X. A Boolean algebra A has a unique non-principal ultrafilter (that is, a maximal filter not generated by a single element of the algebra) if and only if there exists an infinite set X such that A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partition Regular
In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets. Given a set X, a collection of subsets \mathbb \subset \mathcal(X) is called ''partition regular'' if every set ''A'' in the collection has the property that, no matter how ''A'' is partitioned into finitely many subsets, at least one of the subsets will also belong to the collection. That is, for any A \in \mathbb, and any finite partition A = C_1 \cup C_2 \cup \cdots \cup C_n, there exists an ''i'' ≤ ''n'', such that C_i belongs to \mathbb. Ramsey theory is sometimes characterized as the study of which collections \mathbb are partition regular. Examples * the collection of all infinite subsets of an infinite set ''X'' is a prototypical example. In this case partition regularity asserts that every finite partition of an infinite set has an infinite cell (i.e. the infinite pigeonhole principle.) * sets with positive upper density in \mathbb: the ''u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra (structure), Boolean algebra under the subset relation, in which the join and meet are given by Intersection (set theory), intersection and Union (set theory), union, and the subset relation itself is the Inclusion (Boolean algebra), Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |