Small Boundary Property
   HOME
*





Small Boundary Property
In mathematics, the small boundary property is a property of certain topological dynamical systems. It is dynamical analog of the inductive definition of Lebesgue covering dimension zero. Definition Consider the category of topological dynamical system (''system'' in short) consisting of a compact metric space X and a homeomorphism T:X\rightarrow X. A set E\subset X is called small if it has vanishing orbit capacity, i.e., \operatorname(E) = 0. This is equivalent to: \forall\mu\in M_(X),\ \mu(E)=0 where M_T(X) denotes the collection of T-invariant measures on X. The system (X,T) is said to have the small boundary property (SBP) if X has a basis of open sets \_^\infty whose boundaries are small, i.e., \operatorname(\partial O_i)=0 for all i. Can one always lower topological entropy? Small sets were introduced by Michael Shub and Benjamin Weiss while investigating the question "can one always lower topological entropy?" Quoting from their article: "For measure theoretic e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Dynamics
In mathematics, topological dynamics is a branch of the theory of dynamical systems in which qualitative, asymptotic properties of dynamical systems are studied from the viewpoint of general topology. Scope The central object of study in topological dynamics is a topological dynamical system, i.e. a topological space, together with a continuous transformation, a continuous flow, or more generally, a semigroup of continuous transformations of that space. The origins of topological dynamics lie in the study of asymptotic properties of trajectories of systems of autonomous ordinary differential equations, in particular, the behavior of limit sets and various manifestations of "repetitiveness" of the motion, such as periodic trajectories, recurrence and minimality, stability, non-wandering points. George Birkhoff is considered to be the founder of the field. A structure theorem for minimal distal flows proved by Hillel Furstenberg in the early 1960s inspired much work on classifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inductive Dimension
In the mathematical field of topology, the inductive dimension of a topological space ''X'' is either of two values, the small inductive dimension ind(''X'') or the large inductive dimension Ind(''X''). These are based on the observation that, in ''n''-dimensional Euclidean space ''R''''n'', (''n'' − 1)-dimensional spheres (that is, the boundaries of ''n''-dimensional balls) have dimension ''n'' − 1. Therefore it should be possible to define the dimension of a space inductively in terms of the dimensions of the boundaries of suitable open sets. The small and large inductive dimensions are two of the three most usual ways of capturing the notion of "dimension" for a topological space, in a way that depends only on the topology (and not, say, on the properties of a metric space). The other is the Lebesgue covering dimension. The term "topological dimension" is ordinarily understood to refer to the Lebesgue covering dimension. For "sufficiently nice" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Covering Dimension
In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way. Informal discussion For ordinary Euclidean spaces, the Lebesgue covering dimension is just the ordinary Euclidean dimension: zero for points, one for lines, two for planes, and so on. However, not all topological spaces have this kind of "obvious" dimension, and so a precise definition is needed in such cases. The definition proceeds by examining what happens when the space is covered by open sets. In general, a topological space ''X'' can be covered by open sets, in that one can find a collection of open sets such that ''X'' lies inside of their union. The covering dimension is the smallest number ''n'' such that for every cover, there is a refinement in which every point in ''X'' lies in the intersection of no more than ''n'' + 1 covering sets. This is the gist of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orbit Capacity
In mathematics, the orbit capacity of a subset of a topological dynamical system may be thought of heuristically as a “topological dynamical probability measure” of the subset. More precisely, its value for a set is a tight upper bound for the normalized number of visits of orbits in this set. Definition A topological dynamical system consists of a compact Hausdorff topological space ''X'' and a homeomorphism T:X\rightarrow X. Let E\subset X be a set. Lindenstrauss introduced the definition of orbit capacity: :\operatorname(E)=\lim_\sup_ \frac 1 n \sum_^ \chi_E (T^k x) Here, \chi_E(x) is the membership function for the set E. That is \chi_E(x)=1 if x\in E and is zero otherwise. Properties One has 0\le\operatorname(E)\le 1. By convention, topological dynamical systems do not come equipped with a measure Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Invariant Measure
In mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration. Definition Let (X, \Sigma) be a measurable space and let f : X \to X be a measurable function from X to itself. A measure \mu on (X, \Sigma) is said to be invariant under f if, for every measurable set A in \Sigma, \mu\left(f^(A)\right) = \mu(A). In terms of the pushforward measure, this states that f_*(\mu) = \mu. The collection of measures (usually probability measures) on X that are invariant under f is sometimes denoted M_f(X). The collection of ergodic meas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boundary (topology)
In topology and mathematics in general, the boundary of a subset of a topological space is the set of points in the closure of not belonging to the interior of . An element of the boundary of is called a boundary point of . The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set include \operatorname(S), \operatorname(S), and \partial S. Some authors (for example Willard, in ''General Topology'') use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets. For example, ''Metric Spaces'' by E. T. Copson uses the term boundary to refer to Hausdorff's border, which is defined as the intersection of a set with its boundary. Hausdorff also introduced the term residue, which is defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Michael Shub
Michael Ira Shub (born August 17, 1943) is an American mathematician who has done research into dynamical systems and the complexity of real number algorithms. Biography Shub obtained his Ph.D. degree at the University of California, Berkeley with a thesis entitled '' Endomorphisms of Compact Differentiable Manifolds'' on 1967. His advisor was Stephen Smale. From 1967 to 1985 he worked at Brandeis University, the University of California, Santa Cruz and the Queens College at the City University of New York. From 1985 to 2004 he joined IBM's Thomas J. Watson Research Center. From 2004 to 2010 he worked at the University of Toronto. After 2010 he is a researcher at the University of Buenos Aires and at the City University of New York. Shub was the Chair of the Society for the Foundations of Computational Mathematics from 1995 to 1997. In 2012, a conference, ''From Dynamics to Complexity'', was organised at the Fields Institute in Toronto celebrating his work. In 2015 he w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Benjamin Weiss
Benjamin Weiss ( he, בנימין ווייס; born 1941) is an American-Israeli mathematician known for his contributions to ergodic theory, topological dynamics, probability theory, game theory, and descriptive set theory. Biography Benjamin ("Benjy") Weiss was born in New York City. In 1962 he received B.A. from Yeshiva University and M.A. from the Graduate School of Science, Yeshiva University. In 1965, he received his Ph.D. from Princeton under the supervision of William Feller. Academic career Between 1965 and 1967, Weiss worked at the IBM Research. In 1967, he joined the faculty of the Hebrew University of Jerusalem; and since 1990 occupied the Miriam and Julius Vinik Chair in Mathematics (Emeritus since 2009). Weiss held visiting positions at Stanford, MSRI, and IBM Research Center. Weiss published over 180 papers in ergodic theory, topological dynamics, orbit equivalence, probability, information theory, game theory, descriptive set theory; with notable contribution ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mean Dimension
In mathematics, the mean (topological) dimension of a topological dynamical system is a non-negative extended real number that is a measure of the complexity of the system. Mean dimension was first introduced in 1999 by Gromov. Shortly after it was developed and studied systematically by Lindenstrauss and Weiss. In particular they proved the following key fact: a system with finite topological entropy has zero mean dimension. For various topological dynamical systems with infinite topological entropy, the mean dimension can be calculated or at least bounded from below and above. This allows mean dimension to be used to distinguish between systems with infinite topological entropy. Mean dimension is also related to the problem of embedding topological  dynamical systems in shift spaces (over Euclidean cubes). General definition A topological dynamical system consists of a compact Hausdorff topological space \textstyle X and a continuous self-map \textstyle T:X\rightarrow X. Let \t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Limit
In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any category although their existence depends on the category that is considered. They are a special case of the concept of limit in category theory. By working in the dual category, that is by reverting the arrows, an inverse limit becomes a direct limit or ''inductive limit'', and a ''limit'' becomes a colimit. Formal definition Algebraic objects We start with the definition of an inverse system (or projective system) of groups and homomorphisms. Let (I, \leq) be a directed poset (not all authors require ''I'' to be directed). Let (''A''''i'')''i''∈''I'' be a family of groups and suppose we have a family of homomorphisms f_: A_j \to A_i for all i \leq j (note the order) with the following properties: # f_ is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topological Entropy
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a ''topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Shift Operator
In mathematics, and in particular functional analysis, the shift operator also known as translation operator is an operator that takes a function to its translation . In time series analysis, the shift operator is called the lag operator. Shift operators are examples of linear operators, important for their simplicity and natural occurrence. The shift operator action on functions of a real variable plays an important role in harmonic analysis, for example, it appears in the definitions of almost periodic functions, positive-definite functions, derivatives, and convolution. Shifts of sequences (functions of an integer variable) appear in diverse areas such as Hardy spaces, the theory of abelian varieties, and the theory of symbolic dynamics, for which the baker's map is an explicit representation. Definition Functions of a real variable The shift operator (where ) takes a function on R to its translation , : T^t f(x) = f_t(x) = f(x+t)~. A practical operational calculus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]