HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under
squeeze mapping In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation (mathematics), rotation or shear mapping. For a fixed p ...
, and a difference of
slope In mathematics, the slope or gradient of a Line (mathematics), line is a number that describes the direction (geometry), direction of the line on a plane (geometry), plane. Often denoted by the letter ''m'', slope is calculated as the ratio of t ...
s is invariant under
shear mapping In plane geometry, a shear mapping is an affine transformation that displaces each point in a fixed direction by an amount proportional to its signed distance function, signed distance from a given straight line, line parallel (geometry), paral ...
.
Ergodic theory Ergodic theory is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, "statistical properties" refers to properties which are expressed through the behav ...
is the study of invariant measures in
dynamical systems In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models ...
. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration.


Definition

Let (X, \Sigma) be a
measurable space In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. It captures and generalises intuitive notions such as length, area, an ...
and let f : X \to X be a
measurable function In mathematics, and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in ...
from X to itself. A measure \mu on (X, \Sigma) is said to be invariant under f if, for every measurable set A in \Sigma, \mu\left(f^(A)\right) = \mu(A). In terms of the pushforward measure, this states that f_*(\mu) = \mu. The collection of measures (usually
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies Measure (mathematics), measure properties such as ''countable additivity''. The difference between a probability measure an ...
s) on X that are invariant under f is sometimes denoted M_f(X). The collection of ergodic measures, E_f(X), is a subset of M_f(X). Moreover, any convex combination of two invariant measures is also invariant, so M_f(X) is a
convex set In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is n ...
; E_f(X) consists precisely of the extreme points of M_f(X). In the case of a
dynamical system In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models ...
(X, T, \varphi), where (X, \Sigma) is a measurable space as before, T is a
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
and \varphi : T \times X \to X is the flow map, a measure \mu on (X, \Sigma) is said to be an invariant measure if it is an invariant measure for each map \varphi_t : X \to X. Explicitly, \mu is invariant
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
\mu\left(\varphi_^(A)\right) = \mu(A) \qquad \text t \in T, A \in \Sigma. Put another way, \mu is an invariant measure for a sequence of
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
s \left(Z_t\right)_ (perhaps a
Markov chain In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally ...
or the solution to a stochastic differential equation) if, whenever the initial condition Z_0 is distributed according to \mu, so is Z_t for any later time t. When the dynamical system can be described by a
transfer operator In mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. In all usual cases, the largest eigenvalue is 1 ...
, then the invariant measure is an eigenvector of the operator, corresponding to an eigenvalue of 1, this being the largest eigenvalue as given by the Frobenius–Perron theorem.


Examples

* Consider the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
\R with its usual
Borel σ-algebra In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union (set theory), union, countable intersection (set theory), intersec ...
; fix a \in \R and consider the translation map T_a : \R \to \R given by: T_a(x) = x + a. Then one-dimensional
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
\lambda is an invariant measure for T_a. * More generally, on n-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
\R^n with its usual Borel σ-algebra, n-dimensional Lebesgue measure \lambda^n is an invariant measure for any
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
of Euclidean space, that is, a map T : \R^n \to \R^n that can be written as T(x) = A x + b for some n \times n
orthogonal matrix In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q^\mathrm Q = Q Q^\mathrm = I, where is the transpose of and is the identi ...
A \in O(n) and a vector b \in \R^n. * The invariant measure in the first example is unique up to trivial renormalization with a constant factor. This does not have to be necessarily the case: Consider a set consisting of just two points \mathbf = \ and the identity map T = \operatorname which leaves each point fixed. Then any probability measure \mu : \mathbf \to \R is invariant. Note that \mathbf trivially has a decomposition into T-invariant components \ and \. *
Area Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
measure in the Euclidean plane is invariant under the special linear group \operatorname(2, \R) of the 2 \times 2 real matrices of
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
1. * Every locally compact group has a
Haar measure In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This Measure (mathematics), measure was introduced by Alfr� ...
that is invariant under the group action (
translation Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
).


See also

*


References

* John von Neumann (1999) ''Invariant measures'',
American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, ...
{{DEFAULTSORT:Invariant Measure Dynamical systems Measures (measure theory)