Regular P-group
   HOME
*





Regular P-group
In mathematical finite group theory, the concept of regular ''p''-group captures some of the more important properties of abelian ''p''-groups, but is general enough to include most "small" ''p''-groups. Regular ''p''-groups were introduced by . Definition A finite ''p''-group ''G'' is said to be regular if any of the following equivalent , conditions are satisfied: * For every ''a'', ''b'' in ''G'', there is a ''c'' in the derived subgroup ''H''′ of the subgroup ''H'' of ''G'' generated by ''a'' and ''b'', such that ''a''''p'' · ''b''''p'' = (''ab'')''p'' · ''c''''p''. * For every ''a'', ''b'' in ''G'', there are elements ''c''''i'' in the derived subgroup of the subgroup generated by ''a'' and ''b'', such that ''a''''p'' · ''b''''p'' = (''ab'')''p'' · ''c''1''p'' ⋯ ''c''k''p''. * For every ''a'', ''b'' in ''G'' and every positive integer ''n'', there are elements ''c''''i'' in the derived subgroup of the subgroup generated by ''a'' and ''b'' such that ''a''''q'' · ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient Group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For example, the cyclic group of addition modulo ''n'' can be obtained from the group of integers under addition by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class (known as a congruence class) as a single entity. It is part of the mathematical field known as group theory. For a congruence relation on a group, the equivalence class of the identity element is always a normal subgroup of the original group, and the other equivalence classes are precisely the cosets of that normal subgroup. The resulting quotient is written G\,/\,N, where G is the original group and N is the normal subgroup. (This is pronounced G\bmod N, where \mbox is short for modulo.) Much of the importance o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Properties Of Groups
Property is the ownership of land, resources, improvements or other tangible objects, or intellectual property. Property may also refer to: Mathematics * Property (mathematics) Philosophy and science * Property (philosophy), in philosophy and logic, an abstraction characterizing an object *Material properties, properties by which the benefits of one material versus another can be assessed *Chemical property, a material's properties that becomes evident during a chemical reaction *Physical property, any property that is measurable whose value describes a state of a physical system *Semantic property *Thermodynamic properties, in thermodynamics and materials science, intensive and extensive physical properties of substances *Mental property, a property of the mind studied by many sciences and parasciences Computer science * Property (programming), a type of class member in object-oriented programming * .properties, a Java Properties File to store program settings as name-value p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Closed
In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ... a p-group G is called power closed if for every Section (group theory), section H of G the product of p^k powers is again a p^kth power. Regular p-groups are an example of power closed groups. On the other hand, powerful p-groups, for which the product of p^k powers is again a p^kth power are not power closed, as this property does not hold for all sections of powerful p-groups. The power closed 2-groups of exponent at least eight are described in . References

* Group theory P-groups {{group-theory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Powerful P-group
In mathematics, in the field of group theory, especially in the study of ''p''-groups and pro-''p''-groups, the concept of powerful ''p''-groups plays an important role. They were introduced in , where a number of applications are given, including results on Schur multipliers. Powerful ''p''-groups are used in the study of automorphisms of ''p''-groups , the solution of the restricted Burnside problem , the classification of finite ''p''-groups via the coclass conjectures , and provided an excellent method of understanding analytic pro-''p''-groups . Formal definition A finite ''p''-group G is called powerful if the commutator subgroup ,G/math> is contained in the subgroup G^p = \langle g^p , g\in G\rangle for odd p, or if ,G/math> is contained in the subgroup G^4 for p=2. Properties of powerful ''p''-groups Powerful ''p''-groups have many properties similar to abelian groups, and thus provide a good basis for studying ''p''-groups. Every finite ''p''-group can be express ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Philip Hall
Philip Hall FRS (11 April 1904 – 30 December 1982), was an English mathematician. His major work was on group theory, notably on finite groups and solvable groups. Biography He was educated first at Christ's Hospital, where he won the Thompson Gold Medal for mathematics, and later at King's College, Cambridge. He was elected a Fellow of the Royal Society in 1951 and awarded its Sylvester Medal in 1961. He was President of the London Mathematical Society in 1955–1957, and awarded its Berwick Prize in 1958 and De Morgan Medal in 1965. Publications * * * See also * Abstract clone * Commutator collecting process * Isoclinism of groups * Regular p-group * Three subgroups lemma * Hall algebra, and Hall polynomials * Hall subgroup * Hall–Higman theorem * Hall–Littlewood polynomial * Hall's universal group * Hall's marriage theorem * Hall word * Hall–Witt identity * Irwin–Hall distribution * Zappa–Szép product In mathematics, especially group theory, the Zap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Index (group Theory)
In mathematics, specifically group theory, the index of a subgroup ''H'' in a group ''G'' is the number of left cosets of ''H'' in ''G'', or equivalently, the number of right cosets of ''H'' in ''G''. The index is denoted , G:H, or :H/math> or (G:H). Because ''G'' is the disjoint union of the left cosets and because each left coset has the same size as ''H'', the index is related to the orders of the two groups by the formula :, G, = , G:H, , H, (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index , G:H, measures the "relative sizes" of ''G'' and ''H''. For example, let G = \Z be the group of integers under addition, and let H = 2\Z be the subgroup consisting of the even integers. Then 2\Z has two cosets in \Z, namely the set of even integers and the set of odd integers, so the index , \Z:2\Z, is 2. More generally, , \Z:n\Z, = n for any positive integer ''n''. When ''G'' is finite, the formula may be written as , G:H, = , G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Omega And Agemo Subgroup
In mathematics, or more specifically group theory, the omega and agemo subgroups described the so-called "power structure" of a finite ''p''-group. They were introduced in where they were used to describe a class of finite ''p''-groups whose structure was sufficiently similar to that of finite abelian ''p''-groups, the so-called, regular p-groups. The relationship between power and commutator structure forms a central theme in the modern study of ''p''-groups, as exemplified in the work on uniformly powerful p-groups. The word "agemo" is just "omega" spelled backwards, and the agemo subgroup is denoted by an upside-down omega. Definition The omega subgroups are the series of subgroups of a finite p-group, ''G'', indexed by the natural numbers: :\Omega_i(G) = \langle \ \rangle. The agemo subgroups are the series of subgroups: : \mho^i(G) = \langle \ \rangle. When ''i'' = 1 and ''p'' is odd, then ''i'' is normally omitted from the definition. When ''p'' is even, an omit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Direct Product Of Groups
In mathematics, specifically in group theory, the direct product is an operation that takes two groups and and constructs a new group, usually denoted . This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics. In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted G \oplus H. Direct sums play an important role in the classification of abelian groups: according to the fundamental theorem of finite abelian groups, every finite abelian group can be expressed as the direct sum of cyclic groups. Definition Given groups (with operation ) and (with operation ), the direct product is defined as follows: The resulting algebraic object satisfies the axioms for a group. Specifically: ;Associativity: The binary operation on is associative. ;Identity: The direct product has an identity element, namely , where is the identity e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]