Rational Representation
In mathematics, in the representation theory of algebraic groups, a linear representation of an algebraic group is said to be rational if, viewed as a map from the group to the general linear group, it is a rational map In mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible. Definition Formal d ... of algebraic varieties. Finite direct sums and products of rational representations are rational. A rational G module is a module that can be expressed as a sum (not necessarily direct) of rational representations. References * Springer Online Reference Works: Rational Representation Representation theory of algebraic groups {{algebra-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure theorem states ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Representation
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation is m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Map
In mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible. Definition Formal definition Formally, a rational map f \colon V \to W between two varieties is an equivalence class of pairs (f_U, U) in which f_U is a morphism of varieties from a non-empty open set U\subset V to W, and two such pairs (f_U, U) and (_, U') are considered equivalent if f_U and _ coincide on the intersection U \cap U' (this is, in particular, vacuously true if the intersection is empty, but since V is assumed irreducible, this is impossible). The proof that this defines an equivalence relation relies on the following lemma: * If two morphisms of varieties are equal on some non-empty open set, then they are equal. f is said to be birational if there exists a rational map g \colon W \to V which is its inverse, where the composition is taken i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Journal Of Mathematics
The ''American Journal of Mathematics'' is a bimonthly mathematics journal published by the Johns Hopkins University Press. History The ''American Journal of Mathematics'' is the oldest continuously published mathematical journal in the United States, established in 1878 at the Johns Hopkins University by James Joseph Sylvester, an English-born mathematician who also served as the journal's editor-in-chief from its inception through early 1884. Initially W. E. Story was associate editor in charge; he was replaced by Thomas Craig in 1880. For volume 7 Simon Newcomb became chief editor with Craig managing until 1894. Then with volume 16 it was "Edited by Thomas Craig with the Co-operation of Simon Newcomb" until 1898. Other notable mathematicians who have served as editors or editorial associates of the journal include Frank Morley, Oscar Zariski, Lars Ahlfors, Hermann Weyl, Wei-Liang Chow, S. S. Chern, André Weil, Harish-Chandra, Jean Dieudonné, Henri Cartan, Stephen S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Johns Hopkins University Press
The Johns Hopkins University Press (also referred to as JHU Press or JHUP) is the publishing division of Johns Hopkins University. It was founded in 1878 and is the oldest continuously running university press in the United States. The press publishes books and journals, and operates other divisions including fulfillment and electronic databases. Its headquarters are in Charles Village, Baltimore. In 2017, after the retirement of Kathleen Keane who is credited with modernizing JHU Press for the digital age, the university appointed new director Barbara Pope. Overview Daniel Coit Gilman, the first president of the Johns Hopkins University, inaugurated the press in 1878. The press began as the university's Publication Agency, publishing the ''American Journal of Mathematics'' in its first year and the ''American Chemical Journal'' in its second. It published its first book, ''Sidney Lanier: A Memorial Tribute'', in 1881 to honor the poet who was one of the university's first writers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
JSTOR
JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of journals in the humanities and social sciences. It provides full-text searches of almost 2,000 journals. , more than 8,000 institutions in more than 160 countries had access to JSTOR. Most access is by subscription but some of the site is public domain, and open access content is available free of charge. JSTOR's revenue was $86 million in 2015. History William G. Bowen, president of Princeton University from 1972 to 1988, founded JSTOR in 1994. JSTOR was originally conceived as a solution to one of the problems faced by libraries, especially research and university libraries, due to the increasing number of academic journals in existence. Most libraries found it prohibitively expensive in terms of cost and space to maintain a comprehen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |