Quasisimple Group
   HOME
*





Quasisimple Group
In mathematics, a quasisimple group (also known as a covering group) is a group that is a perfect central extension ''E'' of a simple group ''S''. In other words, there is a short exact sequence :1 \to Z(E) \to E \to S \to 1 such that E = , E/math>, where Z(E) denotes the center of ''E'' and , denotes the commutator. I. Martin Isaacs, ''Finite group theory'' (2008), p. 272. Equivalently, a group is quasisimple if it is equal to its commutator subgroup and its inner automorphism group Inn(''G'') (its quotient by its center) is simple (and it follows Inn(''G'') must be non-abelian simple, as inner automorphism groups are never non-trivial cyclic). All non-abelian simple groups are quasisimple. The subnormal quasisimple subgroups of a group control the structure of a finite insoluble group in much the same way as the minimal normal subgroups of a finite soluble group do, and so are given a name, component. The subgroup generated by the subnormal quasisimple subgroups is call ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Soluble Group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Motivation Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0). This means associated to a polynomial f \in F /math> there is a tower of field extensionsF = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=Ksuch that # F_i = F_ alpha_i/math> where \alpha_i^ \in F_, so \alpha_i is a solution to the equation x^ - a where a \in F_ # F_m contains a splitting field for f(x) Example For example, the smallest Galois field extension of \mathbb containing the elemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Group
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group ''GL''(''n'') of invertible matrices, the special orthogonal group ''SO''(''n''), and the symplectic group ''Sp''(2''n''). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive. Claude Chevalley showed that the classification of reductive groups is the same over any algebraically closed field. In particular, the simple algebraic groups are classified by Dynkin diagrams, as in the theory of compact Lie groups or complex semisimple Lie algebras. Reductive groups over an arbitrary field are harder to classify, but for many fields such as the real numbers R or a number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schur Multiplier
In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group H_2(G, \Z) of a group ''G''. It was introduced by in his work on projective representations. Examples and properties The Schur multiplier \operatorname(G) of a finite group ''G'' is a finite abelian group whose exponent divides the order of ''G''. If a Sylow ''p''-subgroup of ''G'' is cyclic for some ''p'', then the order of \operatorname(G) is not divisible by ''p''. In particular, if all Sylow ''p''-subgroups of ''G'' are cyclic, then \operatorname(G) is trivial. For instance, the Schur multiplier of the nonabelian group of order 6 is the trivial group since every Sylow subgroup is cyclic. The Schur multiplier of the elementary abelian group of order 16 is an elementary abelian group of order 64, showing that the multiplier can be strictly larger than the group itself. The Schur multiplier of the quaternion group is trivial, but the Schur multiplier of dihedral 2-groups ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Almost Simple Group
In mathematics, a group is said to be almost simple if it contains a non- abelian simple group and is contained within the automorphism group of that simple group – that is, if it fits between a (non-abelian) simple group and its automorphism group. In symbols, a group ''A'' is almost simple if there is a (non-abelian) simple group ''S'' such that S \leq A \leq \operatorname(S). Examples * Trivially, non-abelian simple groups and the full group of automorphisms are almost simple, but proper examples exist, meaning almost simple groups that are neither simple nor the full automorphism group. * For n=5 or n \geq 7, the symmetric group \mathrm_n is the automorphism group of the simple alternating group \mathrm_n, so \mathrm_n is almost simple in this trivial sense. * For n=6 there is a proper example, as \mathrm_6 sits properly between the simple \mathrm_6 and \operatorname(\mathrm_6), due to the exceptional outer automorphism of \mathrm_6. Two other groups, the Mathieu group \math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Covering Groups Of The Alternating And Symmetric Groups
In the mathematical area of group theory, the covering groups of the alternating and symmetric groups are groups that are used to understand the projective representations of the alternating and symmetric groups. The covering groups were classified in : for , the covering groups are 2-fold covers except for the alternating groups of degree 6 and 7 where the covers are 6-fold. For example the binary icosahedral group covers the icosahedral group, an alternating group of degree 5, and the binary tetrahedral group covers the tetrahedral group, an alternating group of degree 4. Definition and classification A group homomorphism from ''D'' to ''G'' is said to be a Schur cover of the finite group ''G'' if: # the kernel is contained both in the center and the commutator subgroup of ''D'', and # amongst all such homomorphisms, this ''D'' has maximal size. The Schur multiplier of ''G'' is the kernel of any Schur cover and has many interpretations. When the homomorphism is understood, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Representation
In the field of representation theory in mathematics, a projective representation of a group ''G'' on a vector space ''V'' over a field ''F'' is a group homomorphism from ''G'' to the projective linear group \mathrm(V) = \mathrm(V) / F^*, where GL(''V'') is the general linear group of invertible linear transformations of ''V'' over ''F'', and ''F''∗ is the normal subgroup consisting of nonzero scalar multiples of the identity transformation (see Scalar transformation). In more concrete terms, a projective representation of G is a collection of operators \rho(g)\in\mathrm(V),\, g\in G satisfying the homomorphism property up to a constant: :\rho(g)\rho(h) = c(g, h)\rho(gh), for some constant c(g, h)\in F. Equivalently, a projective representation of G is a collection of operators \tilde\rho(g)\in\mathrm(V), g\in G, such that \tilde\rho(gh)=\tilde\rho(g)\tilde\rho(h). Note that, in this notation, \tilde\rho(g) is a ''set'' of linear operators related by multiplication with some nonze ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Representation Theory Of Finite Groups
The representation theory of groups is a part of mathematics which examines how groups act on given structures. Here the focus is in particular on operations of groups on vector spaces. Nevertheless, groups acting on other groups or on sets are also considered. For more details, please refer to the section on permutation representations. Other than a few marked exceptions, only finite groups will be considered in this article. We will also restrict ourselves to vector spaces over fields of characteristic zero. Because the theory of algebraically closed fields of characteristic zero is complete, a theory valid for a special algebraically closed field of characteristic zero is also valid for every other algebraically closed field of characteristic zero. Thus, without loss of generality, we can study vector spaces over \Complex. Representation theory is used in many parts of mathematics, as well as in quantum chemistry and physics. Among other things it is used in algebra to exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Almost Simple Group
In mathematics, a group is said to be almost simple if it contains a non- abelian simple group and is contained within the automorphism group of that simple group – that is, if it fits between a (non-abelian) simple group and its automorphism group. In symbols, a group ''A'' is almost simple if there is a (non-abelian) simple group ''S'' such that S \leq A \leq \operatorname(S). Examples * Trivially, non-abelian simple groups and the full group of automorphisms are almost simple, but proper examples exist, meaning almost simple groups that are neither simple nor the full automorphism group. * For n=5 or n \geq 7, the symmetric group \mathrm_n is the automorphism group of the simple alternating group \mathrm_n, so \mathrm_n is almost simple in this trivial sense. * For n=6 there is a proper example, as \mathrm_6 sits properly between the simple \mathrm_6 and \operatorname(\mathrm_6), due to the exceptional outer automorphism of \mathrm_6. Two other groups, the Mathieu group \math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphism Group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the group of invertible linear transformations from ''X'' to itself (the general linear group of ''X''). If instead ''X'' is a group, then its automorphism group \operatorname(X) is the group consisting of all group automorphisms of ''X''. Especially in geometric contexts, an automorphism group is also called a symmetry group. A subgroup of an automorphism group is sometimes called a transformation group. Automorphism groups are studied in a general way in the field of category theory. Examples If ''X'' is a set with no additional structure, then any bijection from ''X'' to itself is an automorphism, and hence the automorphism group of ''X'' in this case is precisely the symmetric group of ''X''. If the set ''X'' has additional struct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Fitting Subgroup
In mathematics, especially in the area of algebra known as group theory, the Fitting subgroup ''F'' of a finite group ''G'', named after Hans Fitting, is the unique largest normal nilpotent subgroup of ''G''. Intuitively, it represents the smallest subgroup which "controls" the structure of ''G'' when ''G'' is solvable. When ''G'' is not solvable, a similar role is played by the generalized Fitting subgroup ''F*'', which is generated by the Fitting subgroup and the components of ''G''. For an arbitrary (not necessarily finite) group ''G'', the Fitting subgroup is defined to be the subgroup generated by the nilpotent normal subgroups of ''G''. For infinite groups, the Fitting subgroup is not always nilpotent. The remainder of this article deals exclusively with finite groups. The Fitting subgroup The nilpotency of the Fitting subgroup of a finite group is guaranteed by Fitting's theorem which says that the product of a finite collection of normal nilpotent subgroups of ''G'' i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Component (group Theory)
In mathematics, in the field of group theory, a component of a finite group is a quasisimple subnormal subgroup. Any two distinct components commute. The product of all the components is the layer of the group. For finite abelian (or nilpotent) groups, ''p''-component is used in a different sense to mean the Sylow ''p''-subgroup, so the abelian group is the product of its ''p''-components for primes ''p''. These are not components in the sense above, as abelian groups are not quasisimple. A quasisimple subgroup of a finite group is called a standard component if its centralizer has even order, it is normal in the centralizer of every involution centralizing it, and it commutes with none of its conjugates. This concept is used in the classification of finite simple groups In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite clas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]