HOME





Almost Simple Group
In mathematics, a group (mathematics), group is said to be almost simple if it contains a non-abelian group, abelian simple group and is contained within the automorphism group of that simple group – that is, if it fits between a (non-abelian) simple group and its automorphism group. In symbols, a group A is almost simple if there is a (non-abelian) simple group ''S'' such that S \leq A \leq \operatorname(S), where the inclusion of S in \mathrm(S) is the Conjugation (group action), action by conjugation, which is Faithful action, faithful since S has a trivial Center (group theory), center. Examples * Trivially, non-abelian simple groups and the full group of automorphisms are almost simple. For n=5 or n \geq 7, the symmetric group \mathrm_n is the automorphism group of the simple alternating group \mathrm_n, so \mathrm_n is almost simple in this trivial sense. * For n=6 there is a proper example, as \mathrm_6 sits properly between the simple \mathrm_6 and \operatorname(\mathrm_6 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective General Linear Group
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associated projective space P(''V''). Explicitly, the projective linear group is the quotient group : PGL(''V'') = GL(''V'')/Z(''V'') where GL(''V'') is the general linear group of ''V'' and Z(''V'') is the subgroup of all nonzero scalar transformations of ''V''; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group. The projective special linear group, PSL, is defined analogously, as the induced action of the special linear group on the associated projective space. Explicitly: : PSL(''V'') = SL(''V'')/SZ(''V'') where SL(''V'') is the special linear group over ''V'' and SZ(''V ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasisimple Group
In mathematics, a quasisimple group (also known as a covering group) is a group that is a perfect central extension ''E'' of a simple group ''S''. In other words, there is a short exact sequence :1 \to Z(E) \to E \to S \to 1 such that E = , E/math>, where Z(E) denotes the center of ''E'' and , denotes the commutator. I. Martin Isaacs, ''Finite group theory'' (2008), p. 272. Equivalently, a group is quasisimple if it is equal to its commutator subgroup and its inner automorphism group Inn(''G'') (its quotient by its center) is simple (and it follows Inn(''G'') must be non-abelian simple, as inner automorphism groups are never non-trivial cyclic). All non-abelian simple groups are quasisimple. The subnormal quasisimple subgroups of a group control the structure of a finite insoluble group in much the same way as the minimal normal subgroups of a finite soluble group do, and so are given a name, component. The subgroup generated by the subnormal quasisimple subgroups is cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solvable Group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Motivation Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equations. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0). This means associated to a polynomial f \in F /math> there is a tower of field extensionsF = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=Ksuch that # F_i = F_ alpha_i/math> where \alpha_i^ \in F_, so \alpha_i is a solution to the equation x^ - a where a \in F_ # F_m contains a splitting field for f(x) Example The smallest Galois field extension of \mathbb containing the elementa = \sqr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups. The study of finite groups has been an integral part of group theory since it arose in the 19th century. One major area of study has been classification: the classification of finite simple groups (those with no nontrivial normal subgroup) was completed in 2004. History During the twentieth century, mathematicians investigated some aspects of the theory of finite groups in great depth, especially the local theory of finite groups and the theory of solvable and nilpotent groups. As a consequence, the complete classification of finite simple groups was achieved, meaning that all those simple groups from which all finite groups can be bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classification Of Finite Simple Groups
In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating groups, alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic groups, sporadic (the Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups). The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Corollary
In mathematics and logic, a corollary ( , ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another proposition; it might also be used more casually to refer to something which naturally or incidentally accompanies something else. Overview In mathematics, a corollary is a theorem connected by a short proof to an existing theorem. The use of the term ''corollary'', rather than ''proposition'' or ''theorem'', is intrinsically subjective. More formally, proposition ''B'' is a corollary of proposition ''A'', if ''B'' can be readily deduced from ''A'' or is self-evident from its proof. In many cases, a corollary corresponds to a special case of a larger theorem, which makes the theorem easier to use and apply, even though its importance is generally considered to be secondary to that of the theorem. In particular, ''B'' is unlikely to be te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schreier Conjecture
In finite group theory, the Schreier conjecture asserts that the outer automorphism group of every finite simple group is solvable. It was proposed by Otto Schreier in 1926, and is now known to be true as a result of the classification of finite simple groups, but no simpler proof Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a co ... is known. References *. Theorems about finite groups Conjectures that have been proved {{Abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation ∗, a subset of is called a subgroup of if also forms a group under the operation ∗. More precisely, is a subgroup of if the Restriction (mathematics), restriction of ∗ to is a group operation on . This is often denoted , read as " is a subgroup of ". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group is a subgroup which is a subset, proper subset of (that is, ). This is often represented notationally by , read as " is a proper subgroup of ". Some authors also exclude the trivial group from being proper (that is, ). If is a subgroup of , then is sometimes called an overgroup of . The same definitions apply more generally when is an arbitrary se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Isomorphism
In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished. Definition and notation Given two groups (G, *) and (H, \odot), a ''group isomorphism'' from (G, *) to (H, \odot) is a bijective group homomorphism from G to H. Spelled out, this means that a group isomorphism is a bijective function f : G \to H such that for all u and v in G it holds that f(u * v) = f(u) \odot f(v). The two groups (G, *) and (H, \odot) are isomorphic if there exists an isomorphism from one to the other. This is written (G, *) \cong (H, \odot). Often shorter and simpler notations can be used. When the relevant group operations are understood, they are omitted and one writes G \co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Group
In mathematics, a group is said to be complete if every automorphism of is inner, and it is centerless; that is, it has a trivial outer automorphism group and trivial center. Equivalently, a group is complete if the conjugation map, (sending an element to conjugation by ), is an isomorphism: injectivity implies that only conjugation by the identity element is the identity automorphism, meaning the group is centerless, while surjectivity implies it has no outer automorphisms. Examples As an example, all the symmetric groups, , are complete except when . For the case , the group has a non-trivial center, while for the case , there is an outer automorphism. The automorphism group of a simple group is an almost simple group; for a non- abelian simple group , the automorphism group of is complete. Properties A complete group is always isomorphic to its automorphism group (via sending an element to conjugation by that element), although the converse need not hold: for exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathieu Group
In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They are the first sporadic groups to be discovered. Sometimes the notation ''M''8, ''M''9, ''M''10, ''M''20, and ''M''21 is used for related groups (which act on sets of 8, 9, 10, 20, and 21 points, respectively), namely the stabilizers of points in the larger groups. While these are not sporadic simple groups, they are subgroups of the larger groups and can be used to construct the larger ones. John Conway has shown that one can also extend this sequence up, obtaining the Mathieu groupoid ''M''13 acting on 13 points. ''M''21 is simple, but is not a sporadic group, being isomorphic to the projective special linear group PSL(3,4). History introduced the group ''M''12 as part of an investigation of multiply transitive permutat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]