Quantum Algebra
   HOME
*





Quantum Algebra
Quantum algebra is one of the top-level mathematics categories used by the arXiv. It is the study of noncommutative analogues and generalizations of commutative algebras, especially those arising in Lie theory. Subjects include: *Quantum groups * Skein theories * Operadic algebra * Diagrammatic algebra *Quantum field theory *Racks and quandles See also *Coherent states in mathematical physics *Glossary of areas of mathematics *Mathematics Subject Classification *Ordered type system, a substructural type system *Outline of mathematics *Quantum logic In the mathematical study of logic and the physical analysis of quantum foundations, quantum logic is a set of rules for manipulation of propositions inspired by the structure of quantum theory. The field takes as its starting point an observat ... References External linksQuantum algebra at arxiv.org Quantum groups {{math-physics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ArXiv
arXiv (pronounced "archive"—the X represents the Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not peer review. It consists of scientific papers in the fields of mathematics, physics, astronomy, electrical engineering, computer science, quantitative biology, statistics, mathematical finance and economics, which can be accessed online. In many fields of mathematics and physics, almost all scientific papers are self-archived on the arXiv repository before publication in a peer-reviewed journal. Some publishers also grant permission for authors to archive the peer-reviewed postprint. Begun on August 14, 1991, arXiv.org passed the half-million-article milestone on October 3, 2008, and had hit a million by the end of 2014. As of April 2021, the submission rate is about 16,000 articles per month. History arXiv was made possible by the compact TeX file format ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Theory
In mathematics, the mathematician Sophus Lie ( ) initiated lines of study involving integration of differential equations, transformation groups, and contact of spheres that have come to be called Lie theory. For instance, the latter subject is Lie sphere geometry. This article addresses his approach to transformation groups, which is one of the areas of mathematics, and was worked out by Wilhelm Killing and Élie Cartan. The foundation of Lie theory is the exponential map relating Lie algebras to Lie groups which is called the Lie group–Lie algebra correspondence. The subject is part of differential geometry since Lie groups are differentiable manifolds. Lie groups evolve out of the identity (1) and the tangent vectors to one-parameter subgroups generate the Lie algebra. The structure of a Lie group is implicit in its algebra, and the structure of the Lie algebra is expressed by root systems and root data. Lie theory has been particularly useful in mathematical physics s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Group
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebras), compact matrix quantum groups (which are structures on unital separable C*-algebras), and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group. The term "quantum group" first appeared in the theory of quantum integrable systems, which was then formalized by Vladimir Drinfeld and Michio Jimbo as a particular class of Hopf algebra. The same term is also used for other Hopf algebras that deform or are close to classical Lie groups or Lie algebras, such as a "bicrossproduct" class of quantum groups introduced by Shahn Majid a little after the work of Drinfeld and Jimbo. In Drinfeld's approach, quantum groups arise as Hopf algebras depe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skein Theories
Skein relations are a mathematical tool used to study knots. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One way to answer the question is using knot polynomials, which are invariants of the knot. If two diagrams have different polynomials, they represent different knots. In general, the converse does not hold. Skein relations are often used to give a simple definition of knot polynomials. A skein relation gives a linear relation between the values of a knot polynomial on a collection of three links which differ from each other only in a small region. For some knot polynomials, such as the Conway, Alexander, and Jones polynomials, the relevant skein relations are sufficient to calculate the polynomial recursively. Definition A skein relationship requires three link diagrams that are identical except at one crossing. The three diagrams must exhibit the three possibilities that could occur for the two line segments ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operadic Algebra
In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad O, one defines an ''algebra over O'' to be a set together with concrete operations on this set which behave just like the abstract operations of O. For instance, there is a Lie operad L such that the algebras over L are precisely the Lie algebras; in a sense L abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations. History Operads originate in algebraic topology; they were introduced to characterize iterated loop spaces by J. Michael Boardman and Rainer M. Vogt in 1969 and by J. Peter May in 1970. The word "operad" was created by May as a portmanteau of "operations" and "monad" (and also because his mother was an opera singer). Interest in operads was considera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagrammatic Algebra
In mathematics, a diagram algebra is an algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ... in which operations are performed using diagrams rather than traditional techniques. In particular, diagrammatic equations can be constructed and manipulated. Usually such algebras have a traditional counterpart which is categorically equivalent. Algebras Diagrams ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Racks And Quandles
In mathematics, racks and quandles are sets with binary operations satisfying axioms analogous to the Reidemeister moves used to manipulate knot diagrams. While mainly used to obtain invariants of knots, they can be viewed as algebraic constructions in their own right. In particular, the definition of a quandle axiomatizes the properties of conjugation in a group. History In 1943, Mituhisa Takasaki (高崎光久) introduced an algebraic structure which he called a ''Kei'' (圭), which would later come to be known as an involutive quandle. His motivation was to find a nonassociative algebraic structure to capture the notion of a reflection in the context of finite geometry. The idea was rediscovered and generalized in (unpublished) 1959 correspondence between John Conway and Gavin Wraith, who at the time were undergraduate students at the University of Cambridge. It is here that the modern definitions of quandles and of racks first appear. Wraith had become interested in these s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coherent States In Mathematical Physics
Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states (see alsoJ-P. Gazeau,''Coherent States in Quantum Physics'', Wiley-VCH, Berlin, 2009.). However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.S.T. Ali, J-P. Antoine, J-P. Gazeau, and U.A. Mueller, Coherent states and their generalizations: A mathematical overview, ''Reviews in Mathematical Physics'' 7 (1995) 1013-1104.S.T. Ali, J-P. Antoine, and J-P. Gazeau, ''Coherent States, Wavelets and Their Generalizations'', Springer-Verlag, New York, Berlin, Heidelberg, 2000. A general definition Let \mathfrak H\, be a complex, separable Hilbert space, X a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glossary Of Areas Of Mathematics
Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers. This glossary is alphabetically sorted. This hides a large part of the relationships between areas. For the broadest areas of mathematics, see . The Mathematics Subject Classification is a hierarchical list of areas and subjects of study that has been elaborated by the community of mathematicians. It is used by most publishers for classifying mathematical articles and books. A B C D E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematics Subject Classification
The Mathematics Subject Classification (MSC) is an alphanumerical classification scheme collaboratively produced by staff of, and based on the coverage of, the two major mathematical reviewing databases, Mathematical Reviews and Zentralblatt MATH. The MSC is used by many mathematics journals, which ask authors of research papers and expository articles to list subject codes from the Mathematics Subject Classification in their papers. The current version is MSC2020. Structure The MSC is a hierarchical scheme, with three levels of structure. A classification can be two, three or five digits long, depending on how many levels of the classification scheme are used. The first level is represented by a two-digit number, the second by a letter, and the third by another two-digit number. For example: * 53 is the classification for differential geometry * 53A is the classification for classical differential geometry * 53A45 is the classification for vector and tensor analysis First l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]