Pseudo-manifold
   HOME
*



picture info

Pseudo-manifold
In mathematics, a pseudomanifold is a special type of topological space. It looks like a manifold at most of its points, but it may contain singularities. For example, the cone of solutions of z^2=x^2+y^2 forms a pseudomanifold. A pseudomanifold can be regarded as a combinatorial realisation of the general idea of a manifold with singularities. The concepts of orientability, orientation and degree of a mapping make sense for pseudomanifolds and moreover, within the combinatorial approach, pseudomanifolds form the natural domain of definition for these concepts. Definition A topological space ''X'' endowed with a triangulation ''K'' is an ''n''-dimensional pseudomanifold if the following conditions hold: # (''pure'') is the union of all ''n''-simplices. # Every is a face of exactly one or two ''n''-simplices for ''n > 1''. # For every pair of ''n''-simplices σ and σ' in ''K'', there is a sequence of ''n''-simplices such that the intersection is an for all ''i'' = 0, .. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stratified Space
In mathematics, especially in topology, a stratified space is a topological space that admits or is equipped with a Stratification (mathematics)#In topology, stratification, a decomposition into subspaces, which are nice in some sense (e.g., smooth or flat). A basic example is a subset of a smooth manifold that admits a Whitney stratification. But there is also an abstract stratified space such as a Thom–Mather stratified space. On a stratified space, a constructible sheaf can be defined as a sheaf that is locally constant sheaf, locally constant on each stratum. Among the several ideals, Grothendieck's ''Esquisse d’un programme'' considers (or proposes) a stratified space with what he calls the tame topology. A stratified space in the sense of Mather Mather gives the following definition of a stratified space. A ''prestratification'' on a topological space ''X'' is a partition of ''X'' into subsets (called strata) such that (a) each stratum is locally closed, (b) it is loca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Loop Quantum Gravity
Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Einstein's geometric formulation rather than the treatment of gravity as a force. As a theory LQG postulates that the structure of Spacetime, space and time is composed of finite loops woven into an extremely fine fabric or network. These networks of loops are called spin networks. The evolution of a spin network, or spin foam, has a scale above the order of a Planck length, approximately 10−35 meters, and smaller scales are meaningless. Consequently, not just matter, but space itself, prefers an atomic hypothesis, atomic structure. The areas of research, which involves about 30 research groups worldwide, share the basic physical assumptions and the mathematical description of q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spin Foam
In physics, the topological structure of spinfoam or spin foam consists of two-dimensional faces representing a configuration required by functional integration to obtain a Feynman's path integral description of quantum gravity. These structures are employed in loop quantum gravity as a version of quantum foam. In loop quantum gravity The covariant formulation of loop quantum gravity provides the best formulation of the dynamics of the theory of quantum gravity – a quantum field theory where the invariance under diffeomorphisms of general relativity applies. The resulting path integral represents a sum over all the possible configurations of spin foam. Spin network A spin network is a one-dimensional graph, together with labels on its vertices and edges which encode aspects of a spatial geometry. A spin network is defined as a diagram like the Feynman diagram which makes a basis of connections between the elements of a differentiable manifold for the Hilbert spaces d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homology Manifold
In mathematics, a homology manifold (or generalized manifold) is a locally compact topological space ''X'' that looks locally like a topological manifold from the point of view of homology theory. Definition A homology ''G''-manifold (without boundary) of dimension ''n'' over an abelian group ''G'' of coefficients is a locally compact topological space X with finite ''G''-cohomological dimension such that for any ''x''∈''X'', the homology groups : H_p(X,X-x, G) are trivial unless ''p''=''n'', in which case they are isomorphic to ''G''. Here ''H'' is some homology theory, usually singular homology. Homology manifolds are the same as homology Z-manifolds. More generally, one can define homology manifolds with boundary, by allowing the local homology groups to vanish at some points, which are of course called the boundary of the homology manifold. The boundary of an ''n''-dimensional first-countable In topology, a branch of mathematics, a first-countable space is a topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Compact Manifold
In mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only ''non-compact'' components. Examples The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. A line is not closed because it is not compact. A closed disk is a compact two-dimensional manifold, but it is not closed because it has a boundary. Open manifolds For a connected manifold, "open" is equivalent to "without boundary and non-compact", but for a disconnected manifold, open is stronger. For instance, the disjoint union of a circle and a line is non-compact since a line is non-compact, but this is not an open manifold since the circle (one of its components) is compact. Abuse of language Most books generally define a manifold as a space that is, locally, homeomorphic to Euclidean space (along with some other technical conditio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Bundle
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every point x of the space X we associate (or "attach") a vector space V(x) in such a way that these vector spaces fit together to form another space of the same kind as X (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over X. The simplest example is the case that the family of vector spaces is constant, i.e., there is a fixed vector space V such that V(x)=V for all x in X: in this case there is a copy of V for each x in X and these copies fit together to form the vector bundle X\times V over X. Such vector bundles are said to be ''trivial''. A more complicated (and prototypical) class of examples are the tangent bundles of smooth (or differentiable) manifolds: to every point of such a manifold w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thom Space
In mathematics, the Thom space, Thom complex, or Pontryagin–Thom construction (named after René Thom and Lev Pontryagin) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space. Construction of the Thom space One way to construct this space is as follows. Let :p: E \to B be a rank ''n'' real vector bundle over the paracompact space ''B''. Then for each point ''b'' in ''B'', the fiber E_b is an n-dimensional real vector space. Choose an orthogonal structure on E, a smoothly varying inner product on the fibers; we can do this using partitions of unity. Let D(E) be the unit ball bundle with respect to our orthogonal structure, and let S(E) be the unit sphere bundle, then the Thom space T(E) is the quotient T(E) := D(E)/S(E) of topological spaces. T(E) is a pointed space with the image of S(E) in the quotient as basepoint. If ''B'' is compact, then T(E) is the one-point compactification of ''E''. For example ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Varieties
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a monic polynomial (an algebraic object) in one variable with complex number coefficients is determined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Surface
In mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only ''non-compact'' components. Examples The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. A line is not closed because it is not compact. A closed disk is a compact two-dimensional manifold, but it is not closed because it has a boundary. Open manifolds For a connected manifold, "open" is equivalent to "without boundary and non-compact", but for a disconnected manifold, open is stronger. For instance, the disjoint union of a circle and a line is non-compact since a line is non-compact, but this is not an open manifold since the circle (one of its components) is compact. Abuse of language Most books generally define a manifold as a space that is, locally, homeomorphic to Euclidean space (along with some other technical con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]