Probabilistic Logic Network
   HOME
*





Probabilistic Logic Network
A probabilistic logic network (PLN) is a conceptual, mathematical, and computational approach to uncertain inference; inspired by logic programming, but using probabilities in place of crisp (true/false) truth values, and fractional uncertainty in place of autoepistemic logic, crisp known/unknown values. In order to carry out effective reasoning in real-world circumstances, artificial intelligence software must robustly handle uncertainty. However, previous approaches to uncertain inference do not have the breadth of scope required to provide an integrated treatment of the disparate forms of cognitively critical uncertainty as they manifest themselves within the various forms of pragmatic inference. Going beyond prior probabilistic approaches to uncertain inference, PLN is able to encompass within uncertain logic such ideas as induction, abductive reasoning, abduction, analogy, fuzziness and speculation, and reasoning about time and causality. PLN was developed by Ben Goertzel, Mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uncertain Inference
Uncertain inference was first described by C. J. van Rijsbergen as a way to formally define a query and document relationship in Information retrieval. This formalization is a logical implication with an attached measure of uncertainty. Definitions Rijsbergen proposes that the measure of uncertainty of a document ''d'' to a query ''q'' be the probability of its logical implication, i.e.: :P(d \to q) A user's query can be interpreted as a set of assertions about the desired document. It is the system's task to infer, given a particular document, if the query assertions are true. If they are, the document is retrieved. In many cases the contents of documents are not sufficient to assert the queries. A knowledge base of facts and rules is needed, but some of them may be uncertain because there may be a probability associated to using them for inference. Therefore, we can also refer to this as ''plausible inference''. The plausibility of an inference d \to q is a function of the pl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayesian Networks
A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms can perform inference and learning in Bayesian networks. Bayesian networks that model sequences of variables (''e.g.'' speech signals or protein sequences) are called dynamic Bayesian networks. Generalizations of Bayesian networks that can represent and solve decision problems under uncertainty are called influence diagrams. Graphical mode ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Artificial Intelligence
Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs. The ''Oxford English Dictionary'' of Oxford University Press defines artificial intelligence as: the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages. AI applications include advanced web search engines (e.g., Google), recommendation systems (used by YouTube, Amazon and Netflix), understanding human speech (such as Siri and Alexa), self-driving cars (e.g., Tesla), automated decision-making and competing at the highest level in strategic game systems (such as chess and Go). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probabilistic Logic
Probabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory. Source trust and epistemic uncertainty about the probabilities they provide, such as defined in subjective logic, are additional elements to consider. The need to deal with a broad variety of contexts and issues has led to many different proposals. Logical background There are numerous proposals for probabilistic logics. Very roughly, they can be categorized into two different classes: those logics that attempt to make a probabilistic extension to logical entailment, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Markov Logic Network
A Markov logic network (MLN) is a probabilistic logic which applies the ideas of a Markov network to first-order logic, enabling uncertain inference. Markov logic networks generalize first-order logic, in the sense that, in a certain limit, all unsatisfiable statements have a probability of zero, and all tautologies have probability one. History Work in this area began in 2003 by Pedro Domingos and Matt Richardson, and they began to use the term MLN to describe it. Description Briefly, it is a collection of formulas from first-order logic, to each of which is assigned a real number, the weight. Taken as a Markov network, the vertices of the network graph are atomic formulas, and the edges are the logical connectives used to construct the formula. Each formula is considered to be a clique, and the Markov blanket is the set of formulas in which a given atom appears. A potential function is associated to each formula, and takes the value of one when the formula is true, and zero when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virtual World
A virtual world (also called a virtual space) is a computer-simulated environment which may be populated by many users who can create a personal avatar, and simultaneously and independently explore the virtual world, participate in its activities and communicate with others. These avatars can be textual, graphical representations, or live video avatars with auditory and touch sensations. Virtual worlds are closely related to mirror worlds. In a virtual world, the user accesses a computer-simulated world which presents perceptual stimuli to the user, who in turn can manipulate elements of the modeled world and thus experience a degree of presence. Such modeled worlds and their rules may draw from reality or fantasy worlds. Example rules are gravity, topography, locomotion, real-time actions, and communication. Communication between users can range from text, graphical icons, visual gesture, sound, and rarely, forms using touch, voice command, and balance senses. Massively multi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reinforcement Learning
Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. Reinforcement learning differs from supervised learning in not needing labelled input/output pairs to be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead the focus is on finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge). The environment is typically stated in the form of a Markov decision process (MDP), because many reinforcement learning algorithms for this context use dynamic programming techniques. The main difference between the classical dynamic programming methods and reinforcement learning algorithms is that the latter do not assume knowledge of an exact mathematica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Narrow AI
Weak artificial intelligence (weak AI) is artificial intelligence that implements a limited part of mind, or, as narrow AI, is focused on one narrow task. In John Searle's terms it “would be useful for testing hypotheses about minds, but would not actually be minds”. Weak artificial intelligence focuses on mimicking how humans perform basic actions such as remembering things, perceiving things, and solving simple problems. As opposed to strong AI, which uses technology to be able to think and learn on its own. Computers are able to use methods such as algorithms and prior knowledge to develop their own ways of thinking like human beings do. Strong artificial intelligence systems are learning how to run independently of the programmers who programmed them. Weak AI is not able to have a mind of its own, and can only imitate physical behaviors that it can observe. It is contrasted with Strong AI, which is defined variously as: * Artificial general intelligence: a machine wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Imprecise Probability
Imprecise probability generalizes probability theory to allow for partial probability specifications, and is applicable when information is scarce, vague, or conflicting, in which case a unique probability distribution may be hard to identify. Thereby, the theory aims to represent the available knowledge more accurately. Imprecision is useful for dealing with expert elicitation, because: * People have a limited ability to determine their own subjective probabilities and might find that they can only provide an interval. * As an interval is compatible with a range of opinions, the analysis ought to be more convincing to a range of different people. Introduction Uncertainty is traditionally modelled by a probability distribution, as developed by Kolmogorov, Laplace, de Finetti, Ramsey, Cox, Lindley, and many others. However, this has not been unanimously accepted by scientists, statisticians, and probabilists: it has been argued that some modification or broadening of probabili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth Value
In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values (''true'' or '' false''). Computing In some programming languages, any expression can be evaluated in a context that expects a Boolean data type. Typically (though this varies by programming language) expressions like the number zero, the empty string, empty lists, and null evaluate to false, and strings with content (like "abc"), other numbers, and objects evaluate to true. Sometimes these classes of expressions are called "truthy" and "falsy" / "false". Classical logic In classical logic, with its intended semantics, the truth values are ''true'' (denoted by ''1'' or the verum ⊤), and '' untrue'' or '' false'' (denoted by ''0'' or the falsum ⊥); that is, classical logic is a two-valued logic. This set of two values is also called the Boolean domain. Corresponding semantics of l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Combinatory Logic
Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It was introduced by Moses Schönfinkel and Haskell Curry, and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages. It is based on combinators, which were introduced by Schönfinkel in 1920 with the idea of providing an analogous way to build up functions—and to remove any mention of variables—particularly in predicate logic. A combinator is a higher-order function that uses only function application and earlier defined combinators to define a result from its arguments. In mathematics Combinatory logic was originally intended as a 'pre-logic' that would clarify the role of quantified variables in logic, essentially by eliminating them. Another way of eliminating quantified variables is Quine's predicate functor logic. While the expressive power of combinatory logic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probabilistic Logic
Probabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory. Source trust and epistemic uncertainty about the probabilities they provide, such as defined in subjective logic, are additional elements to consider. The need to deal with a broad variety of contexts and issues has led to many different proposals. Logical background There are numerous proposals for probabilistic logics. Very roughly, they can be categorized into two different classes: those logics that attempt to make a probabilistic extension to logical entailment, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]