HOME



picture info

Polyomino
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in popular puzzles since at least 1907, and the enumeration of pentominoes is dated to antiquity. Many results with the pieces of 1 to 6 squares were first published in '' Fairy Chess Review'' between the years 1937 and 1957, under the name of "dissection problems." The name ''polyomino'' was invented by Solomon W. Golomb in 1953, and it was popularized by Martin Gardner in a November 1960 " Mathematical Games" column in ''Scientific American''. Related to polyominoes are polyiamonds, formed from equilateral triangles; polyhexes, formed from regular hexagons; and other plane polyforms. Polyominoes have been generalized to higher dimensions by joining cubes to form polycubes, or hypercubes to form polyhypercubes. In statistical physics, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polycube
image:tetracube_categories.svg, upAll 8 one-sided tetracubes – if chirality is ignored, the bottom 2 in grey are considered the same, giving 7 free tetracubes in total image:9L cube puzzle solution.svg, A puzzle involving arranging nine L tricubes into a 3×3×3 cube A polycube is a solid figure formed by joining one or more equal cube (geometry), cubes face to face. Polycubes are the three-dimensional analogues of the planar polyominoes. The Soma cube, the Bedlam cube, the Diabolical cube, the Slothouber–Graatsma puzzle, and the Conway puzzle are examples of packing problems based on polycubes. Enumerating polycubes image:AGK-pentacube.png, A Chirality (mathematics), chiral pentacube Like polyominoes, polycubes can be enumerated in two ways, depending on whether Chirality (mathematics), chiral pairs of polycubes (those equivalent by Reflection symmetry, mirror reflection, but not by using only translations and rotations) are counted as one polycube or two. For example, 6 t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentomino
A pentomino (or 5-omino) is a polyomino of order 5; that is, a polygon in the Plane (geometry), plane made of 5 equal-sized squares connected edge to edge. The term is derived from the Greek word for '5' and "domino". When rotation symmetry, rotations and reflection symmetry, reflections are not considered to be distinct shapes, there are 12 different ''Free polyomino, free'' pentominoes. When reflections are considered distinct, there are 18 ''One-sided polyomino, one-sided'' pentominoes. When rotations are also considered distinct, there are 63 ''Fixed polyomino, fixed'' pentominoes. Pentomino tiling puzzles and games are popular in recreational mathematics. Usually, video games such as ''Tetris'' imitations and Rampart (game), ''Rampart'' consider mirror reflections to be distinct, and thus use the full set of 18 one-sided pentominoes. (Tetris itself uses 4-square shapes.) Each of the twelve pentominoes satisfies the Conway criterion; hence, every pentomino is capable of tilin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tromino
A tromino or triomino is a polyomino of size 3, that is, a polygon in the plane made of three equal-sized squares connected edge-to-edge. Symmetry and enumeration When rotations and reflections are not considered to be distinct shapes, there are only two different ''free'' trominoes: "I" and "L" (the "L" shape is also called "V"). Since both free trominoes have reflection symmetry, they are also the only two ''one-sided'' trominoes (trominoes with reflections considered distinct). When rotations are also considered distinct, there are six ''fixed'' trominoes: two I and four L shapes. They can be obtained by rotating the above forms by 90°, 180° and 270°. Rep-tiling and Golomb's tromino theorem Both types of tromino can be dissected into ''n''2 smaller trominos of the same type, for any integer ''n'' > 1. That is, they are rep-tiles. Continuing this dissection recursively leads to a tiling of the plane, which in many cases is an aperiodic tiling. In this context, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyform
In recreational mathematics, a polyform is a plane figure or solid compound constructed by joining together identical basic polygons. The basic polygon is often (but not necessarily) a convex plane-filling polygon, such as a square or a triangle. More specific names have been given to polyforms resulting from specific basic polygons, as detailed in the table below. For example, a square basic polygon results in the well-known polyominoes. Construction rules The rules for joining the polygons together may vary, and must therefore be stated for each distinct type of polyform. Generally, however, the following rules apply: #Two basic polygons may be joined only along a common edge, and must share the entirety of that edge. #No two basic polygons may overlap. #A polyform must be connected (that is, all one piece; see connected graph, connected space). Configurations of disconnected basic polygons do not qualify as polyforms. #The mirror image of an asymmetric polyform is not co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyiamond
A polyiamond (also polyamond or simply iamond, or sometimes triangular polyomino) is a polyform whose base form is an equilateral triangle. The word ''polyiamond'' is a back-formation from ''diamond'', because this word is often used to describe the shape of a pair of equilateral triangles placed base to base, and the initial 'di-' looks like a Greek prefix meaning 'two-' (though ''diamond'' actually derives from Greek '' ἀδάμας'' - also the basis for the word "adamant"). The name was suggested by recreational mathematics writer Thomas H. O'Beirne in ''New Scientist'' 1961 number 1, page 164. Counting The basic combinatorial question is, How many different polyiamonds exist with a given number of cells? Like polyominoes, polyiamonds may be either free or one-sided. Free polyiamonds are invariant under reflection as well as translation and rotation. One-sided polyiamonds distinguish reflections. The number of free ''n''-iamonds for ''n'' = 1, 2, 3, ... is: :1, 1, 1, 3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domino (mathematics)
In mathematics, a domino is a polyomino of order 2, that is, a polygon in the plane made of two equal-sized squares connected edge-to-edge. When rotations and reflections are not considered to be distinct shapes, there is only one ''free'' domino. Since it has reflection symmetry, it is also the only ''one-sided'' domino (with reflections considered distinct). When rotations are also considered distinct, there are two ''fixed'' dominoes: The second one can be created by rotating the one above by 90°. In a wider sense, the term ''domino'' is sometimes understood to mean a tile of any shape. Packing and tiling Dominos can tile the plane in a countably infinite number of ways. The number of tilings of a 2×''n'' rectangle with dominoes is F_n, the ''n''th Fibonacci number. Domino tilings figure in several celebrated problems, including the Aztec diamond problem in which large diamond-shaped regions have a number of tilings equal to a power of two, with most tilings appearing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematical Games (column)
Over a period of 24 years (January 1957 – December 1980), Martin Gardner wrote 288 consecutive monthly "Mathematical Games" columns for ''Scientific American'' magazine. During the next years, until June 1986, Gardner wrote 9 more columns, bringing his total to 297. During this period other authors wrote most of the columns. In 1981, Gardner's column alternated with a new column by Douglas Hofstadter called "Metamagical_Themas#List_of_Hofstadter's_%22Metamagical_Themas%22_columns, Metamagical Themas" (an anagram of "Mathematical Games"). The table below lists Gardner's columns. Twelve of Gardner's columns provided the cover art for that month's magazine, indicated by "[cover]" in the table with a hyperlink to the cover. Other articles by Gardner Gardner wrote 5 other articles for ''Scientific American''. His flexagon article in December 1956 was in all but name the first article in the series of ''Mathematical Games'' columns and led directly to the series which began the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhex (mathematics)
In recreational mathematics, a polyhex is a polyform with a hexagon, regular hexagon (or 'hex' for short) as the base form, constructed by joining together 1 or more hexagons. Specific forms are named by their number of hexagons: ''monohex'', ''dihex'', ''trihex'', ''tetrahex'', etc. They were named by David Klarner who investigated them. Each individual polyhex tile and tessellation polyhexes and can be drawn on a regular hexagonal tiling. Construction rules The rules for joining hexagons together may vary. Generally, however, the following rules apply: #Two hexagons may be joined only along a common edge, and must share the entirety of that edge. #No two hexagons may overlap. #A polyhex must be connected. Configurations of disconnected basic polygons do not qualify as polyhexes. #The mirror image of an asymmetric polyhex is not considered a distinct polyhex (polyhex are "double sided"). Tessellation properties All of the polyhexes with fewer than five hexagons can form at le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fairy Chess Review
''Fairy Chess Review'' () was a magazine that was devoted principally to fairy chess problems, but also included extensive original results on related questions in mathematical recreations, such as knight's tour A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square exactly once. If the knight ends on a square that is one knight's move from the beginning square (so that it could tour the board again im ...s and polyominoes (under the title of "dissections"), and chess-related word puzzles. It appeared six times per year and nine volumes were published, from 1930 to 1958. Although they are often referred to under the title ''Fairy Chess Review'', the first two volumes (August 1930 to June 1936) in fact bore the title ''The Problemist Fairy Chess Supplement''. These were published by the British Chess Problem Society (BCPS) as an offshoot of their magazine '' The Problemist'' which began in 1926. The first two volumes were su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square
In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal sides. As with all rectangles, a square's angles are right angles (90 degree (angle), degrees, or Pi, /2 radians), making adjacent sides perpendicular. The area of a square is the side length multiplied by itself, and so in algebra, multiplying a number by itself is called square (algebra), squaring. Equal squares can tile the plane edge-to-edge in the square tiling. Square tilings are ubiquitous in tiled floors and walls, graph paper, image pixels, and game boards. Square shapes are also often seen in building floor plans, origami paper, food servings, in graphic design and heraldry, and in instant photos and fine art. The formula for the area of a square forms the basis of the calculation of area and motivates the search for methods for s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recreational Mathematics
Recreational mathematics is mathematics carried out for recreation (entertainment) rather than as a strictly research-and-application-based professional activity or as a part of a student's formal education. Although it is not necessarily limited to being an endeavor for amateurs, many topics in this field require no knowledge of advanced mathematics. Recreational mathematics involves mathematical puzzles and games, often appealing to children and untrained adults and inspiring their further study of the subject. The Mathematical Association of America (MAA) includes recreational mathematics as one of its seventeen Special Interest Groups, commenting: Mathematical competitions (such as those sponsored by mathematical associations) are also categorized under recreational mathematics. Topics Some of the more well-known topics in recreational mathematics are Rubik's Cubes, magic squares, fractals, logic puzzles and mathematical chess problems, but this area of mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cube (geometry)
A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It is a type of parallelepiped, with pairs of parallel opposite faces, and more specifically a rhombohedron, with congruent edges, and a rectangular cuboid, with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron. The cube can be represented in many ways, one of which is the graph known as the cubical graph. It can be constructed by using the Cartesian product of graphs. The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract. A cube with 1, unit s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]