HOME
*



picture info

Domino (mathematics)
In mathematics, a domino is a polyomino of order 2, that is, a polygon in the plane made of two equal-sized squares connected edge-to-edge. When rotations and reflections are not considered to be distinct shapes, there is only one ''free'' domino. Since it has reflection symmetry, it is also the only ''one-sided'' domino (with reflections considered distinct). When rotations are also considered distinct, there are two ''fixed'' dominoes: The second one can be created by rotating the one above by 90°. In a wider sense, the term ''domino'' is sometimes understood to mean a tile of any shape. Packing and tiling Dominos can tile the plane in a countably infinite number of ways. The number of tilings of a 2×''n'' rectangle with dominoes is F_n, the ''n''th Fibonacci number. Domino tilings figure in several celebrated problems, including the Aztec diamond problem in which large diamond-shaped regions have a number of tilings equal to a power of two, with most tilings appearing r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domino Green
Dominoes is a family of tile-based games played with gaming pieces, commonly known as dominoes. Each domino is a rectangular tile, usually with a line dividing its face into two square ''ends''. Each end is marked with a number of spots (also called '' pips'' or ''dots'') or is blank. The backs of the tiles in a set are indistinguishable, either blank or having some common design. The gaming pieces make up a domino set, sometimes called a ''deck'' or ''pack''. The traditional European domino set consists of 28 tiles, also known as pieces, bones, rocks, stones, men, cards or just dominoes, featuring all combinations of spot counts between zero and six. A domino set is a generic gaming device, similar to playing cards or dice, in that a variety of games can be played with a set. Another form of entertainment using domino pieces is the practice of domino toppling. The earliest mention of dominoes is from Song dynasty China found in the text ''Former Events in Wulin'' by Zhou Mi (1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tessellation
A tessellation or tiling is the covering of a surface, often a plane (mathematics), plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to high-dimensional spaces, higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern. Some special kinds include ''regular tilings'' with regular polygonal tiles all of the same shape, and ''semiregular tilings'' with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that lacks a repeating pattern is called "non-periodic". An ''aperiodic tiling'' uses a small set of tile shapes that cannot form a repeating pattern. A ''tessellation of space'', also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions. A real physical tessellation is a tiling made of materials such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dominoes
Dominoes is a family of tile-based games played with gaming pieces, commonly known as dominoes. Each domino is a rectangular tile, usually with a line dividing its face into two square ''ends''. Each end is marked with a number of spots (also called '' pips'' or ''dots'') or is blank. The backs of the tiles in a set are indistinguishable, either blank or having some common design. The gaming pieces make up a domino set, sometimes called a ''deck'' or ''pack''. The traditional European domino set consists of 28 tiles, also known as pieces, bones, rocks, stones, men, cards or just dominoes, featuring all combinations of spot counts between zero and six. A domino set is a generic gaming device, similar to playing cards or dice, in that a variety of games can be played with a set. Another form of entertainment using domino pieces is the practice of domino toppling. The earliest mention of dominoes is from Song dynasty China found in the text ''Former Events in Wulin'' by Zhou Mi (1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chessboard
A chessboard is a used to play chess. It consists of 64 squares, 8 rows by 8 columns, on which the chess pieces are placed. It is square in shape and uses two colours of squares, one light and one dark, in a chequered pattern. During play, the board is oriented such that each player's near-right corner square is a light square. The columns of a chessboard are known as ', the rows are known as ', and the lines of adjoining same-coloured squares (each running from one edge of the board to an adjacent edge) are known as '. Each square of the board is named using algebraic, descriptive, or numeric chess notation; algebraic notation is the FIDE standard. In algebraic notation, using White's perspective, files are labeled ''a'' through ''h'' from left to right, and ranks are labeled ''1'' through ''8'' from bottom to top; each square is identified by the file and rank which it occupies. The a- through d-files comprise the , while the e- through h-files comprise the . History and evo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mutilated Chessboard Problem
The mutilated chessboard problem is a tiling puzzle posed by Max Black in 1946 that asks: Suppose a standard 8×8 chessboard (or checkerboard) has two diagonally opposite corners removed, leaving 62 squares. Is it possible to place 31 dominoes of size 2×1 so as to cover all of these squares? It is an impossible puzzle: there is no domino tiling meeting these conditions. One proof of its impossibility uses the fact that, with the corners removed, the chessboard has 32 squares of one color and 30 of the other, but each domino must cover equally many squares of each color. More generally, if any two squares are removed from the chessboard, the rest can be tiled by dominoes if and only if the removed squares are of different colors. This problem has been used as a test case for automated reasoning, creativity, and the philosophy of mathematics. History The mutilated chessboard problem is an instance of domino tiling of grids and polyominoes, also known as "dimer models", a gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Of Two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer  as the exponent. In a context where only integers are considered, is restricted to non-negative values, so there are 1, 2, and 2 multiplied by itself a certain number of times. The first ten powers of 2 for non-negative values of are: : 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... Because two is the base of the binary numeral system, powers of two are common in computer science. Written in binary, a power of two always has the form 100...000 or 0.00...001, just like a power of 10 in the decimal system. Computer science Two to the exponent of , written as , is the number of ways the bits in a binary word of length can be arranged. A word, interpreted as an unsigned integer, can represent values from 0 () to  () inclusively. Corresponding signed integer values can be positive, negative and zero; see signed n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aztec Diamond
In combinatorial mathematics, an Aztec diamond of order ''n'' consists of all squares of a square lattice whose centers (''x'',''y'') satisfy , ''x'', + , ''y'', ≤ ''n''. Here ''n'' is a fixed integer, and the square lattice consists of unit squares with the origin as a vertex of 4 of them, so that both ''x'' and ''y'' are half-integers. The Aztec diamond theorem states that the number of domino tilings of the Aztec diamond of order ''n'' is 2''n''(''n''+1)/2. The Arctic Circle theorem says that a random tiling of a large Aztec diamond tends to be frozen outside a certain circle. It is common to color the tiles in the following fashion. First consider a checkerboard coloring of the diamond. Each tile will cover exactly one black square. Vertical tiles where the top square covers a black square, is colored in one color, and the other vertical tiles in a second. Similarly for horizontal tiles. Knuth has also defined Aztec diamonds of order ''n'' + 1/2. They are identical wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibonacci Number
In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the first few values in the sequence are: :0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. The Fibonacci numbers were first described in Indian mathematics, as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths. They are named after the Italian mathematician Leonardo of Pisa, later known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book ''Liber Abaci''. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the ''Fibonacci Quarterly''. Applications of Fibonacci numbers include co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reflection Symmetry
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D there is a line/axis of symmetry, in 3D a plane of symmetry. An object or figure which is indistinguishable from its transformed image is called mirror symmetric. In conclusion, a line of symmetry splits the shape in half and those halves should be identical. Symmetric function In formal terms, a mathematical object is symmetric with respect to a given operation such as reflection, rotation or translation, if, when applied to the object, this operation preserves some property of the object. The set of operations that preserve a given property of the object form a group. Two objects are symmetric to each other with respect to a given group of operations if one is obtained from the other by some of the operations (and vice versa). The symm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyomino
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in popular puzzles since at least 1907, and the enumeration of pentominoes is dated to antiquity. Many results with the pieces of 1 to 6 squares were first published in ''Fairy Chess Review'' between the years 1937 to 1957, under the name of "dissection problems." The name ''polyomino'' was invented by Solomon W. Golomb in 1953, and it was popularized by Martin Gardner in a November 1960 "Mathematical Games" column in ''Scientific American''. Related to polyominoes are polyiamonds, formed from equilateral triangles; polyhexes, formed from regular hexagons; and other plane polyforms. Polyominoes have been generalized to higher dimensions by joining cubes to form polycubes, or hypercubes to form polyhypercubes. In statistical physics, the study ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Free Polyomino
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in popular puzzles since at least 1907, and the enumeration of pentominoes is dated to antiquity. Many results with the pieces of 1 to 6 squares were first published in ''Fairy Chess Review'' between the years 1937 to 1957, under the name of "dissection problems." The name ''polyomino'' was invented by Solomon W. Golomb in 1953, and it was popularized by Martin Gardner in a November 1960 "Mathematical Games" column in ''Scientific American''. Related to polyominoes are polyiamonds, formed from equilateral triangles; polyhexes, formed from regular hexagons; and other plane polyforms. Polyominoes have been generalized to higher dimensions by joining cubes to form polycubes, or hypercubes to form polyhypercubes. In statistical physics, the study ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reflection (mathematics)
In mathematics, a reflection (also spelled reflexion) is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis would look like q. Its image by reflection in a horizontal axis would look like b. A reflection is an involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state. The term ''reflection'' is sometimes used for a larger class of mappings from a Euclidean space to itself, namely the non-identity isometries that are involutions. Such isometries have a set of fixed points (the "mirror") that is an affine subspace, but is possibly smaller than a hy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]