P-adically Closed Field
   HOME
*





P-adically Closed Field
In mathematics, a ''p''-adically closed field is a field that enjoys a closure property that is a close analogue for ''p''-adic fields to what real closure is to the real field. They were introduced by James Ax and Simon B. Kochen in 1965. Definition Let K be the field \mathbb of rational numbers and v be its usual p-adic valuation (with v(p)=1). If F is a (not necessarily algebraic) extension field of K, itself equipped with a valuation w, we say that (F,w) is formally ''p''-adic when the following conditions are satisfied: * w extends v (that is, w(x)=v(x) for all x\in K), * the residue field of w coincides with the residue field of v (the residue field being the quotient of the valuation ring \ by its maximal ideal \), * the smallest positive value of w coincides with the smallest positive value of v (namely 1, since ''v'' was assumed to be normalized): in other words, a uniformizer for K remains a uniformizer for F. (Note that the value group of ''K'' may be larger t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one sided maximal ideal ''A'' is not necessarily two-sided, the quotient ''R''/''A'' is not necessarily a ring, but it is a simple module over ''R''. If ''R'' has a unique maximal right ideal, then ''R'' is known as a local ring, and the maximal right ideal is also the unique maxim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantifier Elimination
Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement "\exists x such that \ldots" can be viewed as a question "When is there an x such that \ldots?", and the statement without quantifiers can be viewed as the answer to that question. One way of classifying formulas is by the amount of quantification. Formulas with less depth of quantifier alternation are thought of as being simpler, with the quantifier-free formulas as the simplest. A theory has quantifier elimination if for every formula \alpha, there exists another formula \alpha_ without quantifiers that is equivalent to it (modulo this theory). Examples An example from high school mathematics says that a single-variable quadratic polynomial has a real root if and only if its discriminant is non-negative: :: \exists x\in\mathbb. (a\neq 0 \wedge ax^2+bx+c=0)\ \ \Longleftrightarrow\ \ a\neq 0 \wedge b^2-4ac\geq 0 H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Complete Theory
In model theory, a first-order theory is called model complete if every embedding of its models is an elementary embedding. Equivalently, every first-order formula is equivalent to a universal formula. This notion was introduced by Abraham Robinson. Model companion and model completion A companion of a theory ''T'' is a theory ''T''* such that every model of ''T'' can be embedded in a model of ''T''* and vice versa. A model companion of a theory ''T'' is a companion of ''T'' that is model complete. Robinson proved that a theory has at most one model companion. Not every theory is model-companionable, e.g. theory of groups. However if ''T'' is an \aleph_0-categorical theory, then it always has a model companion. A model completion for a theory ''T'' is a model companion ''T''* such that for any model ''M'' of ''T'', the theory of ''T''* together with the diagram of ''M'' is complete. Roughly speaking, this means every model of ''T'' is embeddable in a model of ''T''* in a uniqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complete Theory
In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence \varphi, the theory T contains the sentence or its negation but not both (that is, either T \vdash \varphi or T \vdash \neg \varphi). Recursively axiomatizable first-order theories that are consistent and rich enough to allow general mathematical reasoning to be formulated cannot be complete, as demonstrated by Gödel's first incompleteness theorem. This sense of ''complete'' is distinct from the notion of a complete ''logic'', which asserts that for every theory that can be formulated in the logic, all semantically valid statements are provable theorems (for an appropriate sense of "semantically valid"). Gödel's completeness theorem is about this latter kind of completeness. Complete theories are closed under a number of conditions internally modelling the T-schema: * For a set of f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lexicographical Order
In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a totally ordered set. There are several variants and generalizations of the lexicographical ordering. One variant applies to sequences of different lengths by comparing the lengths of the sequences before considering their elements. Another variant, widely used in combinatorics, orders subsets of a given finite set by assigning a total order to the finite set, and converting subsets into increasing sequences, to which the lexicographical order is applied. A generalization defines an order on a Cartesian product of partially ordered sets; this order is a total order if and only if all factors of the Cartesian product are totally ordered. Motivation and definition The words in a lexicon (the set of words used in some language) have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The Kochen Operator
''The'' () is a grammatical article in English, denoting persons or things already mentioned, under discussion, implied or otherwise presumed familiar to listeners, readers, or speakers. It is the definite article in English. ''The'' is the most frequently used word in the English language; studies and analyses of texts have found it to account for seven percent of all printed English-language words. It is derived from gendered articles in Old English which combined in Middle English and now has a single form used with pronouns of any gender. The word can be used with both singular and plural nouns, and with a noun that starts with any letter. This is different from many other languages, which have different forms of the definite article for different genders or numbers. Pronunciation In most dialects, "the" is pronounced as (with the voiced dental fricative followed by a schwa) when followed by a consonant sound, and as (homophone of pronoun ''thee'') when followed by a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Henselian Ring
In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by , who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative. Some standard references for Hensel rings are , , and . Definitions In this article rings will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings. * A local ring ''R'' with maximal ideal ''m'' is called Henselian if Hensel's lemma holds. This means that if ''P'' is a monic polynomial in ''R'' 'x'' then any factorization of its image ''P'' in (''R''/''m'') 'x''into a product of coprime monic polynomials can be lifted to a factorization in ''R'' 'x'' * A local ring is Henselian if and only if every finite ring extension is a product of local rings. * A Henselian local ring is called strictly Henselian if its residue field is separably closed. * By abuse of termi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gaussian Rational
In mathematics, a Gaussian rational number is a complex number of the form ''p'' + ''qi'', where ''p'' and ''q'' are both rational numbers. The set of all Gaussian rationals forms the Gaussian rational field, denoted Q(''i''), obtained by adjoining the imaginary number ''i'' to the field of rationals. Properties of the field The field of Gaussian rationals provides an example of an algebraic number field, which is both a quadratic field and a cyclotomic field (since ''i'' is a 4th root of unity). Like all quadratic fields it is a Galois extension of Q with Galois group cyclic of order two, in this case generated by complex conjugation, and is thus an abelian extension of Q, with conductor 4. As with cyclotomic fields more generally, the field of Gaussian rationals is neither ordered nor complete (as a metric space). The Gaussian integers Z 'i''form the ring of integers of Q(''i''). The set of all Gaussian rationals is countably infinite. Ford spheres The concept ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniformizer
In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain ''R'' which satisfies any one of the following equivalent conditions: # ''R'' is a local principal ideal domain, and not a field. # ''R'' is a valuation ring with a value group isomorphic to the integers under addition. # ''R'' is a local Dedekind domain and not a field. # ''R'' is a Noetherian local domain whose maximal ideal is principal, and not a field.https://mathoverflow.net/a/155639/114772 # ''R'' is an integrally closed Noetherian local ring with Krull dimension one. # ''R'' is a principal ideal domain with a unique non-zero prime ideal. # ''R'' is a principal ideal domain with a unique irreducible element (up to multiplication by units). # ''R'' is a unique factorization domain with a unique irreducible element (up to multiplication by units). # ''R'' is Noetherian, not a field, and every nonzero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Residue Field
In mathematics, the residue field is a basic construction in commutative algebra. If ''R'' is a commutative ring and ''m'' is a maximal ideal, then the residue field is the quotient ring ''k'' = ''R''/''m'', which is a field. Frequently, ''R'' is a local ring and ''m'' is then its unique maximal ideal. This construction is applied in algebraic geometry, where to every point ''x'' of a scheme ''X'' one associates its residue field ''k''(''x''). One can say a little loosely that the residue field of a point of an abstract algebraic variety is the 'natural domain' for the coordinates of the point. Definition Suppose that ''R'' is a commutative local ring, with maximal ideal ''m''. Then the residue field is the quotient ring ''R''/''m''. Now suppose that ''X'' is a scheme and ''x'' is a point of ''X''. By the definition of scheme, we may find an affine neighbourhood ''U'' = Spec(''A''), with ''A'' some commutative ring. Considered in the neighbourhood ''U'', the point ''x'' correspon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other res ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]