HOME
*





Orthodox Semigroup
In mathematics, an orthodox semigroup is a regular semigroup whose set of idempotents forms a subsemigroup. In more recent terminology, an orthodox semigroup is a regular ''E''-semigroup. The term ''orthodox semigroup'' was coined by T. E. Hall and presented in a paper published in 1969. Certain special classes of orthodox semigroups had been studied earlier. For example, semigroups that are also unions of groups, in which the sets of idempotents form subsemigroups were studied by P. H. H. Fantham in 1960. Examples *Consider the binary operation in the set ''S'' = defined by the following Cayley table : :Then ''S'' is an orthodox semigroup under this operation, the subsemigroup of idempotents being . *Inverse semigroups and bands are examples of orthodox semigroups. Some elementary properties The set of idempotents in an orthodox semigroup has several interesting properties. Let ''S'' be a regular semigroup and for any ''a'' in ''S'' let ''V''(''a'') denote the set of inverse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Semigroup
In mathematics, a regular semigroup is a semigroup ''S'' in which every element is regular, i.e., for each element ''a'' in ''S'' there exists an element ''x'' in ''S'' such that . Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations. History Regular semigroups were introduced by J. A. Green in his influential 1951 paper "On the structure of semigroups"; this was also the paper in which Green's relations were introduced. The concept of ''regularity'' in a semigroup was adapted from an analogous condition for rings, already considered by John von Neumann. It was Green's study of regular semigroups which led him to define his celebrated relations. According to a footnote in Green 1951, the suggestion that the notion of regularity be applied to semigroups was first made by David Rees. The term inversive semigroup (French: demi-groupe inversif) was historically used as synonym in the pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Idempotent
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency). The term was introduced by American mathematician Benjamin Peirce in 1870 in the context of elements of algebras that remain invariant when raised to a positive integer power, and literally means "(the quality of having) the same power", from + '' potence'' (same + power). Definition An element x of a set S equipped with a binary operator \cdot is said to be ''idempotent'' under \cdot if : . The ''binary operation'' \cdot is said to be ''idempotent'' if : . Examples * In the monoid (\mathbb, \times) of the natural numbers with multiplication, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subsemigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


E-semigroup
In the area of mathematics known as semigroup theory, an ''E''-semigroup is a semigroup in which the idempotents form a subsemigroup. Certain classes of ''E''-semigroups have been studied long before the more general class, in particular, a regular semigroup that is also an ''E''-semigroup is known as an orthodox semigroup. Weipoltshammer proved that the notion of weak inverse In mathematics, the term weak inverse is used with several meanings. Theory of semigroups In the theory of semigroups, a weak inverse of an element ''x'' in a semigroup is an element ''y'' such that . If every element has a weak inverse, the s ... (the existence of which is one way to define ''E''-inversive semigroups) can also be used to define/characterize ''E''-semigroups as follows: a semigroup ''S'' is an ''E''-semigroup if and only if, for all ''a'' and ''b'' ∈ ''S'', ''W''(''ab'') = ''W''(''b'')''W''(''a''), where ''W''(''x'') ≝ is the set of weak inverses of ''x''. References Semigr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean-Éric Pin
Jean-Éric Pin is a French mathematician and theoretical computer scientist known for his contributions to the algebraic automata theory and semigroup theory. He is a CNRS research director. Biography Pin earned his undergraduate degree from ENS Cachan in 1976 and his doctorate (Doctorat d'état) from the Pierre and Marie Curie University in 1981. Since 1988 he has been a CNRS research director at Paris Diderot University. In the years 1992–2006 he was a professor at École Polytechnique. Pin is a member of the Academia Europaea The Academia Europaea is a pan-European Academy of Humanities, Letters, Law, and Sciences. The Academia was founded in 1988 as a functioning Europe-wide Academy that encompasses all fields of scholarly inquiry. It acts as co-ordinator of Europea ... (2011) and an EATCS fellow (2014). In 2018, Pin became the first recipient of the Salomaa Prize in Automata Theory, Formal Languages, and Related Topics. References External links Personal page ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alfred H
Alfred may refer to: Arts and entertainment *''Alfred J. Kwak'', Dutch-German-Japanese anime television series * ''Alfred'' (Arne opera), a 1740 masque by Thomas Arne * ''Alfred'' (Dvořák), an 1870 opera by Antonín Dvořák *"Alfred (Interlude)" and "Alfred (Outro)", songs by Eminem from the 2020 album '' Music to Be Murdered By'' Business and organisations * Alfred, a radio station in Shaftesbury, England *Alfred Music, an American music publisher *Alfred University, New York, U.S. *The Alfred Hospital, a hospital in Melbourne, Australia People * Alfred (name) includes a list of people and fictional characters called Alfred * Alfred the Great (848/49 – 899), or Alfred I, a king of the West Saxons and of the Anglo-Saxons Places Antarctica * Mount Alfred (Antarctica) Australia * Alfredtown, New South Wales * County of Alfred, South Australia Canada * Alfred and Plantagenet, Ontario * Alfred Island, Nunavut * Mount Alfred, British Columbia United States * Alfred, Maine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary operation ''on a set'' is a binary operation whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups. An operation of arity two that involves several sets is sometimes also called a ''binary operation''. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar. Such binary operations may be called simply binary functions. Binary operations are the keystone of most algebraic structures that are studie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cayley Table
Named after the 19th century British mathematician Arthur Cayley, a Cayley table describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table reminiscent of an addition or multiplication table. Many properties of a groupsuch as whether or not it is abelian, which elements are inverses of which elements, and the size and contents of the group's centercan be discovered from its Cayley table. A simple example of a Cayley table is the one for the group under ordinary multiplication: History Cayley tables were first presented in Cayley's 1854 paper, "On The Theory of Groups, as depending on the symbolic equation ''θ'' ''n'' = 1". In that paper they were referred to simply as tables, and were merely illustrativethey came to be known as Cayley tables later on, in honour of their creator. Structure and layout Because many Cayley tables describe groups that are not abelian, the product ''ab'' with respect to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Semigroup
In group (mathematics), group theory, an inverse semigroup (occasionally called an inversion semigroup) ''S'' is a semigroup in which every element ''x'' in ''S'' has a unique ''inverse'' ''y'' in ''S'' in the sense that ''x = xyx'' and ''y = yxy'', i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries. (The convention followed in this article will be that of writing a function on the right of its argument, e.g. ''x f'' rather than ''f(x)'', and composing functions from left to right—a convention often observed in semigroup theory.) Origins Inverse semigroups were introduced independently by Viktor Vladimirovich Wagner in the Soviet Union in 1952, and by Gordon Preston in the United Kingdom in 1954. Both authors arrived at inverse semigroups via the study of partial bijections of a Set (mathematics), set: a partial function, partial transformati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Band (mathematics)
In mathematics, a band (also called idempotent semigroup) is a semigroup in which every element is idempotent (in other words equal to its own square). Bands were first studied and named by ; the lattice of varieties of bands was described independently in the early 1970s by Biryukov, Fennemore and Gerhard. Semilattices, left-zero bands, right-zero bands, rectangular bands, normal bands, left-regular bands, right-regular bands and regular bands, specific subclasses of bands that lie near the bottom of this lattice, are of particular interest and are briefly described below. Varieties of bands A class of bands forms a variety if it is closed under formation of subsemigroups, homomorphic images and direct product. Each variety of bands can be defined by a single defining identity. Semilattices Semilattices are exactly commutative bands; that is, they are the bands satisfying the equation * for all and . Bands induce a preorder that may be defined as x \leq y if and only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pullback
In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: in simple terms, a function f of a variable y, where y itself is a function of another variable x, may be written as a function of x. This is the pullback of f by the function y. f(y(x)) \equiv g(x) It is such a fundamental process that it is often passed over without mention. However, it is not just functions that can be "pulled back" in this sense. Pullbacks can be applied to many other objects such as differential forms and their cohomology classes; see * Pullback (differential geometry) * Pullback (cohomology) Fiber-product The pullback bundle is an example that bridges the notion of a pullback as precomposition, and the notion of a pullback as a Cartesian square. In that example, the base space of a fiber bundle is pulled bac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]