Operator Ideal
   HOME
*





Operator Ideal
In functional analysis, a branch of mathematics, an operator ideal is a special kind of class of continuous linear operators between Banach spaces. If an operator T belongs to an operator ideal \mathcal, then for any operators A and B which can be composed with T as BTA, then BTA is class \mathcal as well. Additionally, in order for \mathcal to be an operator ideal, it must contain the class of all finite-rank Banach space operators. Formal definition Let \mathcal denote the class of continuous linear operators acting between arbitrary Banach spaces. For any subclass \mathcal of \mathcal and any two Banach spaces X and Y over the same field \mathbb\in\, denote by \mathcal(X,Y) the set of continuous linear operators of the form T:X\to Y such that T \in \mathcal. In this case, we say that \mathcal(X,Y) is a component of \mathcal. An operator ideal is a subclass \mathcal of \mathcal, containing every identity operator acting on a 1-dimensional Banach space, such that for any two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations. The usage of the word '' functional'' as a noun goes back to the calculus of variations, implying a function whose argument is a function. The term was first used in Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class (set Theory)
In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid Russell's paradox (see ). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity. A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems. In Quine's set-theoretical writing, the phrase "ultimate class" is often used ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuous Linear Operator
In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear operator if and only if it is a continuous linear operator. Continuous linear operators Characterizations of continuity Suppose that F : X \to Y is a linear operator between two topological vector spaces (TVSs). The following are equivalent: F is continuous. F is continuous at some point x \in X. F is continuous at the origin in X. if Y is locally convex then this list may be extended to include: for every continuous seminorm q on Y, there exists a continuous seminorm p on X such that q \circ F \leq p. if X and Y are both Hausdorff locally convex spaces then this list may be extended to include: F is weakly continuous and its transpose ^t F : Y^ \to X^ maps equicontinuous subsets of Y^ to equicontinuous subsets of X^. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term " Fréchet space." Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Operator
In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact closure in Y). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that X,Y are Banach, but the definition can be extended to more general spaces. Any bounded operator ''T'' that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When ''Y'' is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators, so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved questio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strictly Singular Operator
In functional analysis, a branch of mathematics, a strictly singular operator is a bounded linear operator between normed spaces which is not bounded below on any infinite-dimensional subspace. Definitions. Let ''X'' and ''Y'' be normed linear spaces, and denote by ''B(X,Y)'' the space of bounded operators of the form T:X\to Y. Let A\subseteq X be any subset. We say that ''T'' is bounded below on A whenever there is a constant c\in(0,\infty) such that for all x\in A, the inequality \, Tx\, \geq c\, x\, holds. If ''A=X'', we say simply that ''T'' is bounded below. Now suppose ''X'' and ''Y'' are Banach spaces, and let Id_X\in B(X) and Id_Y\in B(Y) denote the respective identity operators. An operator T\in B(X,Y) is called inessential whenever Id_X-ST is a Fredholm operator for every S\in B(Y,X). Equivalently, ''T'' is inessential if and only if Id_Y-TS is Fredholm for every S\in B(Y,X). Denote by \mathcal(X,Y) the set of all inessential operators in B(X,Y). An operator ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Completely Continuous Operator
Completely may refer to: * ''Completely'' (Diamond Rio album) * ''Completely'' (Christian Bautista album), 2005 * "Completely", a song by American singer and songwriter Michael Bolton * "Completely", a song by Shane Filan from ''Love Always'', 2017 * "Completely", a song by Blue October from ''This Is What I Live For'', 2020 See also * Completeness (other) Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]