Optical Theorem
   HOME
*





Optical Theorem
In physics, the optical theorem is a general law of wave scattering theory, which relates the forward scattering amplitude to the total cross section of the scatterer. It is usually written in the form :\sigma_\mathrm=\frac~\mathrm\,f(0), where (0) is the scattering amplitude with an angle of zero, that is the amplitude of the wave scattered to the center of a distant screen and is the wave vector in the incident direction. Because the optical theorem is derived using only conservation of energy, or in quantum mechanics from conservation of probability, the optical theorem is widely applicable and, in quantum mechanics, \sigma_\mathrm includes both elastic and inelastic scattering. The generalized optical theorem, first derived by Werner Heisenberg, allows for arbitrary outgoing directions ''k: :\int f(\mathbf',\mathbf'')f(\mathbf'',\mathbf)~d\mathbf''=\frac\mathrm~f(\mathbf', \mathbf). The original optical theorem is recovered by letting \mathbf'=\mathbf. History The optica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frederic De Hoffmann
Frederic de Hoffmann (July 8, 1924 in Vienna, Austria – October 4, 1989 in La Jolla) was a nuclear physicist who worked on the Manhattan Project. He came to the United States of America in 1941 and graduated from Harvard University in 1945 (he also received a master's in 1947 and a doctorate in 1948). Before graduating, de Hoffmann was sent to Los Alamos National Laboratory in 1944 where he assisted Edward Teller in the development of the Hydrogen bomb. Frederic de Hoffmann was an advocate of peaceful atomic energy. After leaving Los Alamos, de Hoffmann collaborated with Hans Bethe and Silvan Schweber on a textbook called ''Mesons and Fields'' and became chairman of the Committee of Senior Reviewers of the United States Atomic Energy Commission. He received his Ph.D from Julian Schwinger in 1948. Frederic De Hoffmann moved to the General Dynamics Corporation in 1955. That year he was recruited by John Jay Hopkins to found General Atomics and serve as its first president. This orga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scattering Theory
In mathematics and physics, scattering theory is a framework for studying and understanding the scattering of waves and particles. Wave scattering corresponds to the collision and scattering of a wave with some material object, for instance sunlight scattered by rain drops to form a rainbow. Scattering also includes the interaction of billiard balls on a table, the Rutherford scattering (or angle change) of alpha particles by gold nuclei, the Bragg scattering (or diffraction) of electrons and X-rays by a cluster of atoms, and the inelastic scattering of a fission fragment as it traverses a thin foil. More precisely, scattering consists of the study of how solutions of partial differential equations, propagating freely "in the distant past", come together and interact with one another or with a boundary condition, and then propagate away "to the distant future". The direct scattering problem is the problem of determining the distribution of scattered radiation/particle flux basing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classical Electrodynamics (book)
''Classical Electrodynamics'' is a textbook about Classical electrodynamics, that subject written by theoretical particle and nuclear physicist John David Jackson (physicist), John David Jackson. The book originated as lecture notes that Jackson prepared for teaching Postgraduate education, graduate-level electromagnetism first at McGill University and then at the University of Illinois at Urbana–Champaign, University of Illinois at Urbana-Champaign. Intended for graduate students, and often known as ''Jackson'' for short, it has been a standard reference on its subject since its first publication in 1962. Some biographical details about Jackson in Mehra's review are inconsistent with Jackson's autobiography. See the article Jackson (1999). The book is notorious for the difficulty of its problems, and its tendency to treat non-obvious conclusions as self-evident. A 2006 survey by the American Physical Society (APS) revealed that 76 out of the 80 U.S. physics departments surveyed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




S-matrix
In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT). More formally, in the context of QFT, the ''S''-matrix is defined as the unitary matrix connecting sets of asymptotically free particle states (the ''in-states'' and the ''out-states'') in the Hilbert space of physical states. A multi-particle state is said to be ''free'' (non-interacting) if it transforms under Lorentz transformations as a tensor product, or ''direct product'' in physics parlance, of ''one-particle states'' as prescribed by equation below. ''Asymptotically free'' then means that the state has this appearance in either the distant past or the distant future. While the ''S''-matrix may be defined for any background (spacetime) that is asymptotically solvable and has no event horizons, it has a simple form in the case of the Minkowsk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Function
In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form f(x) = \exp (-x^2) and with parametric extension f(x) = a \exp\left( -\frac \right) for arbitrary real constants , and non-zero . It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric " bell curve" shape. The parameter is the height of the curve's peak, is the position of the center of the peak, and (the standard deviation, sometimes called the Gaussian RMS width) controls the width of the "bell". Gaussian functions are often used to represent the probability density function of a normally distributed random variable with expected value and variance . In this case, the Gaussian is of the form g(x) = \frac \exp\left( -\frac \frac \right). Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffraction
Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word ''diffraction'' and was the first to record accurate observations of the phenomenon in 1660. In classical physics, the diffraction phenomenon is described by the Huygens–Fresnel principle that treats each point in a propagating wavefront as a collection of individual spherical wavelets. The characteristic bending pattern is most pronounced when a wave from a coherent source (such as a laser) encounters a slit/aperture that is comparable in size to its wavelength, as shown in the inserted image. This is due to the addition, or interference, of different points on the wavefront (or, equivalently, each wavelet) that travel by paths of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties. Most optical phenomena can be accounted for by using the classical electromagnetic description of light. Complete electromagnetic descriptions of light are, however, often difficult to apply in practice. Practical optics is usually done using simplified models. The most common of these, geometric optics, treats light as a collection of rays that travel in straight lines and bend when they pass through or reflect from surfaces. Physical optics is a more comprehensive model of light, which includes wave effects such as diffraction and interference that cannot be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integral
In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ..., an integral assigns numbers to functions in a way that describes Displacement (geometry), displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with Derivative, differentiation, integration is a fundamental, essential operation of calculus,Integral calculus is a very well established mathematical discipline for which there are many sources. See and , for example. and serves as a tool to solve problems in mathematics and physics involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others. The integrals enumerated here are those termed definite integrals, which can be int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intensity (physics)
In physics, the intensity or flux of radiant energy is the Power (physics), power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. In the SI system, it has units watts per square metre (W/m2), or kilogram, kg⋅second, s−3 in SI base unit, base units. Intensity is used most frequently with waves such as acoustic waves (sound) or electromagnetic waves such as light or radio waves, in which case the time averaging, ''average'' power transfer over one Period (physics), period of the wave is used. ''Intensity'' can be applied to other circumstances where energy is transferred. For example, one could calculate the intensity of the kinetic energy carried by drops of water from a garden sprinkler. The word "intensity" as used here is not synonymous with "wikt:strength, strength", "wikt:amplitude, amplitude", "wikt:magnitude, magnitude", or "wikt:level, level", as it sometimes is in colloquial speech. Intensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Taylor Expansion
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series, when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the mid-18th century. The partial sum formed by the first terms of a Taylor series is a polynomial of degree that is called the th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally better as increases. Taylor's theorem gives quantitative estimates on the error introduced by the use of such approximations. If the Taylor series of a function is convergent, its sum is the limit of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plane Wave
In physics, a plane wave is a special case of wave or field: a physical quantity whose value, at any moment, is constant through any plane that is perpendicular to a fixed direction in space. For any position \vec x in space and any time t, the value of such a field can be written as :F(\vec x,t) = G(\vec x \cdot \vec n, t), where \vec n is a unit-length vector, and G(d,t) is a function that gives the field's value as dependent on only two real parameters: the time t, and the scalar-valued displacement d = \vec x \cdot \vec n of the point \vec x along the direction \vec n. The displacement is constant over each plane perpendicular to \vec n. The values of the field F may be scalars, vectors, or any other physical or mathematical quantity. They can be complex numbers, as in a complex exponential plane wave. When the values of F are vectors, the wave is said to be a longitudinal wave if the vectors are always collinear with the vector \vec n, and a transverse wave if they ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]