Nilradical Of A Ring
   HOME
*





Nilradical Of A Ring
In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements: :\mathfrak_R = \lbrace f \in R \mid f^m=0 \text m\in\mathbb_\rbrace. In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways; see the article Radical of a ring for more on this. The nilradical of a Lie algebra is similarly defined for Lie algebras. Commutative rings The nilradical of a commutative ring is the set of all nilpotent elements in the ring, or equivalently the radical of the zero ideal. This is an ideal because the sum of any two nilpotent elements is nilpotent (by the binomial formula), and the product of any element with a nilpotent element is nilpotent (by commutativity). It can also be characterized as the intersection of all the prime ideals of the ring (in fact, it is the intersection of all minimal prime ideals). A ring is called reduced if it has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). The empty set may also be called the void set. Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets. In the past, "0" was occasionally used as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation âˆ—, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation âˆ—. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reinhold Baer
Reinhold Baer (22 July 1902 – 22 October 1979) was a German mathematician, known for his work in algebra. He introduced injective modules in 1940. He is the eponym of Baer rings and Baer groups. Biography Baer studied mechanical engineering for a year at Leibniz University Hannover. He then went to study philosophy at Freiburg in 1921. While he was at Göttingen in 1922 he was influenced by Emmy Noether and Hellmuth Kneser. In 1924 he won a scholarship for specially gifted students. Baer wrote up his doctoral dissertation and it was published in Crelle's Journal in 1927. Baer accepted a post at Halle in 1928. There, he published Ernst Steinitz's "Algebraische Theorie der Körper" with Helmut Hasse, first published in Crelle's Journal in 1910. While Baer was with his wife in Austria, Adolf Hitler and the Nazis came into power. Both of Baer's parents were Jewish, and he was for this reason informed that his services at Halle were no longer required. Louis Mordell invited him t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Laskerâ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilpotent Ideal
In mathematics, more specifically ring theory, an ideal ''I'' of a ring ''R'' is said to be a nilpotent ideal if there exists a natural number ''k'' such that ''I''''k'' = 0. By ''I''''k'', it is meant the additive subgroup generated by the set of all products of ''k'' elements in ''I''. Therefore, ''I'' is nilpotent if and only if there is a natural number ''k'' such that the product of any ''k'' elements of ''I'' is 0. The notion of a nilpotent ideal is much stronger than that of a nil ideal in many classes of rings. There are, however, instances when the two notions coincide—this is exemplified by Levitzky's theorem. The notion of a nilpotent ideal, although interesting in the case of commutative rings, is most interesting in the case of noncommutative rings. Relation to nil ideals The notion of a nil ideal has a deep connection with that of a nilpotent ideal, and in some classes of rings, the two notions coincide. If an ideal is nilpotent, it is of course nil, but a nil ideal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Artinian Ring
In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition. Precisely, a ring is left Artinian if it satisfies the descending chain condition on left ideals, right Artinian if it satisfies the descending chain condition on right ideals, and Artinian or two-sided Artinian if it is both left and right Artinian. For commutative rings the left and right definitions coincide, but in general they are distinct from each other. The Artin–Wedderburn theorem charact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobson Ring
In algebra, a Hilbert ring or a Jacobson ring is a ring such that every prime ideal is an intersection of primitive ideals. For commutative rings primitive ideals are the same as maximal ideals so in this case a Jacobson ring is one in which every prime ideal is an intersection of maximal ideals. Jacobson rings were introduced independently by , who named them after Nathan Jacobson because of their relation to Jacobson radicals, and by , who named them Hilbert rings after David Hilbert because of their relation to Hilbert's Nullstellensatz. Jacobson rings and the Nullstellensatz Hilbert's Nullstellensatz of algebraic geometry is a special case of the statement that the polynomial ring in finitely many variables over a field is a Hilbert ring. A general form of the Nullstellensatz states that if ''R'' is a Jacobson ring, then so is any finitely generated ''R''-algebra ''S''. Moreover, the pullback of any maximal ideal ''J'' of ''S'' is a maximal ideal ''I'' of ''R'', and ''S/J' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobson Radical
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or \operatorname(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in . The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to rings without unity. The radical of a module extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring and module theoretic results, such as Nakayama's lemma. Definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one sided maximal ideal ''A'' is not necessarily two-sided, the quotient ''R''/''A'' is not necessarily a ring, but it is a simple module over ''R''. If ''R'' has a unique maximal right ideal, then ''R'' is known as a local ring, and the maximal right ideal is also the unique maximal le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quotient Ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring and a two-sided ideal in , a new ring, the quotient ring , is constructed, whose elements are the cosets of in subject to special and operations. (Only the fraction slash "/" is used in quotient ring notation, not a horizontal fraction bar.) Quotient rings are distinct from the so-called "quotient field", or field of fractions, of an integral domain as well as from the more general "rings of quotients" obtained by localization. Formal quotient ring construction Given a ring and a two-sided ideal in , we may define an equivalence relation on as follows: : if and only if is in . Using the ideal properties, it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]