Nonoblique Correction
   HOME
*





Nonoblique Correction
In four-fermion scattering processes of particle physics, a nonoblique correction, also called a direct correction, refers to a radiative correction of type  +  →  +  in the electroweak sector of the Standard Model. These corrections are being studied at the CERN LEP collider. Together with the oblique corrections, ''nonoblique corrections'' can be used to constrain models of physics beyond the Standard Model. Classes There are three classes of radiative corrections to these processes: * vacuum polarization corrections, * vertex corrections, and * box corrections. The vertex and box corrections, which depend on the identity of the initial and final state fermions, are referred to as the non-oblique corrections. The vacuum polarization corrections are referred to as oblique corrections, since they only affect the mixing and propagation of the gauge bosons and they do not depend on which type of fermions appear in the initial or final states. E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Four-fermion Interactions
In quantum field theory, fermions are described by anticommuting spinor fields. A four-fermion interaction describes a local interaction between four fermionic fields at a point. Local here means that it all happens at the same spacetime point. This might be an effective field theory or it might be fundamental. Relativistic models Some examples are the following: * Fermi's theory of the weak interaction. The interaction term has a (vector minus axial) form. *The Gross–Neveu model. This is a four-fermi theory of Dirac fermions without chiral symmetry and as such, it may or may not be massive. *The Thirring model. This is a four-fermi theory of fermions with a vector coupling. *The Nambu–Jona-Lasinio model. This is a four-fermi theory of Dirac fermions with chiral symmetry and as such, it has no bare mass. Nonrelativistic models A nonrelativistic example is the BCS theory at large length scales with the phonons integrated out so that the force between two dressed electron ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Renormalization
Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian. For example, an electron theory may begin by postulating an electron with an initial mass and charge. In quantum field theory a cloud of virtual particles, such as photons, positrons, and others surrounds and interacts with the initial electron. Accounting for the interactions of the surrounding particles (e.g. collisions at different energies) shows that the electron-system behaves as if it had a different mass and charge than initially postulated. Renormalization, in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electroweak
In particle physics, the electroweak interaction or electroweak force is the unified field theory, unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the electroweak scale, unification energy, on the order of 246 GeV,The particular number 246 GeV is taken to be the vacuum expectation value v = (G_\text \sqrt)^ of the Higgs field (where G_\text is the Fermi coupling constant). they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 Kelvin, K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Geneva, on the France–Switzerland border. It comprises 23 member states, and Israel (admitted in 2013) is currently the only non-European country holding full membership. CERN is an official United Nations General Assembly observer. The acronym CERN is also used to refer to the laboratory; in 2019, it had 2,660 scientific, technical, and administrative staff members, and hosted about 12,400 users from institutions in more than 70 countries. In 2016, CERN generated 49 petabytes of data. CERN's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics research — consequently, numerous experiments have been constructed at CERN through international collaborations. CERN is the site of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oblique Correction
In particle physics, an oblique correction refers to a particular type of radiative correction to the electroweak sector of the Standard Model. Oblique corrections are defined in four- fermion scattering processes, ( +  →  +  ) at the CERN Large Electron–Positron Collider. There are three classes of radiative corrections to these processes: vacuum polarization corrections, vertex corrections, and box corrections. The vacuum polarization corrections are referred to as oblique corrections, since they only affect the mixing and propagation of the gauge bosons and they do not depend on which type of fermions appear in the initial or final states. (The vertex and box corrections, which depend on the identity of the initial and final state fermions, are called nonoblique corrections.) Any new particles charged under the electroweak gauge groups can contribute to oblique corrections. Therefore, the oblique corrections can be used to constrain possibl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vacuum Polarization
In quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electron–positron pairs that change the distribution of charges and currents that generated the original electromagnetic field. It is also sometimes referred to as the self-energy of the gauge boson (photon). After developments in radar equipment for World War II resulted in higher accuracy for measuring the energy levels of the hydrogen atom, I.I. Rabi made measurements of the Lamb shift and the anomalous magnetic dipole moment of the electron. These effects corresponded to the deviation from the value −2 for the spectroscopic electron ''g''-factor that are predicted by the Dirac equation. Later, Hans Bethe theoretically calculated those shifts in the hydrogen energy levels due to vacuum polarization on his return train ride from the Shelter Island Conference to Cornell. The effects of vacuum polarizatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vertex Function
In quantum electrodynamics, the vertex function describes the coupling between a photon and an electron beyond the leading order of perturbation theory. In particular, it is the one particle irreducible correlation function involving the fermion \psi, the antifermion \bar, and the vector potential A. Definition The vertex function \Gamma^\mu can be defined in terms of a functional derivative of the effective action Seff as :\Gamma^\mu = - The dominant (and classical) contribution to \Gamma^\mu is the gamma matrix \gamma^\mu, which explains the choice of the letter. The vertex function is constrained by the symmetries of quantum electrodynamics — Lorentz invariance; gauge invariance or the transversality of the photon, as expressed by the Ward identity; and invariance under parity — to take the following form: : \Gamma^\mu = \gamma^\mu F_1(q^2) + \frac F_2(q^2) where \sigma^ = (i/2) gamma^, \gamma^, q_ is the incoming four-momentum of the external photon (on the rig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anomalous Magnetic Dipole Moment
In quantum electrodynamics, the anomalous magnetic moment of a particle is a contribution of effects of quantum mechanics, expressed by Feynman diagrams with loops, to the magnetic moment of that particle. (The ''magnetic moment'', also called ''magnetic dipole moment'', is a measure of the strength of a magnetic source.) The "Dirac" magnetic moment, corresponding to tree-level Feynman diagrams (which can be thought of as the classical result), can be calculated from the Dirac equation. It is usually expressed in terms of the ''g''-factor; the Dirac equation predicts g = 2. For particles such as the electron, this classical result differs from the observed value by a small fraction of a percent. The difference is the anomalous magnetic moment, denoted a and defined as a = \frac Electron The one-loop contribution to the anomalous magnetic moment—corresponding to the first and largest quantum mechanical correction—of the electron is found by calculating the vertex functio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Initial And Final State Radiation
In quantum field theory, initial and final state radiation refers to certain kinds of radiative emissions that are not due to particle annihilation.Reducing the Uncertainty in the Detection Efficiency for Π0 Particles at BABAR
Kim Alwyn. Accessed 08 March 2013. It is important in experimental and theoretical studies of interactions at particle colliders.


Explanation of initial and final states

Particle accelerators and colliders produce collisions (interactions) of particles (like the or the ). In th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theoretical Advanced Study Institute
The Theoretical Advanced Study Institute or TASI is a four-week summer school in high-energy physics or astrophysics held yearly at the University of Colorado at Boulder. The school is meant primarily for advanced graduate students and consists of a series of pedagogical lectures on selected topics given by active researchers in the field. TASI is the most common summer school attended by high-energy physics graduate students in the United States. Writeups of the TASI lectures are traditionally collected into a published volume each year, creating a valuable resource for students hoping to learn about current research topics in an accessible way. The writeups are typically also posted by the lecturers on arXiv.org, providing freely-accessible web-based sources on various physics topics. Since 2007, TASI has also posted video recordings of the lectures online. Recent TASI schools History The first TASI was held in 1984 at the University of Michigan. Subsequent TASIs were held a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]