In
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
, initial and final state radiation refers to certain kinds of radiative emissions that are not due to
particle annihilation
In particle physics, annihilation is the process that occurs when a subatomic particle collides with its respective antiparticle to produce other particles, such as an electron colliding with a positron to produce two photons. The total energy a ...
.
Reducing the Uncertainty in the Detection Efficiency for Π0 Particles at BABAR
Kim Alwyn. Accessed 08 March 2013. It is important in experimental and theoretical studies of interactions at particle colliders.
Explanation of initial and final states
Particle accelerators and colliders produce collisions (interactions) of particles (like the electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
or the proton
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
). In the terminology of the quantum state
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in ...
, the colliding particles form the ''Initial State''. In the collision, particles can be annihilated or/and exchanged, producing possibly different sets of particles, the ''Final States''. The Initial and Final States of the interaction relate through the so-called scattering matrix (S-matrix
In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
More forma ...
).
The probability amplitude
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The modulus squared of this quantity represents a probability density.
Probability amplitudes provide a relationship between the quan ...
for a transition of a quantum system from the initial state having state vector to the final state vector is given by the scattering matrix element
:
where is the S-matrix
In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
More forma ...
.
Electron-positron annihilation example
The electron-positron annihilation interaction:
has a contribution from the second order Feynman diagram shown adjacent:
In the initial state (at the bottom; early time) there is one electron (e−) and one positron (e+) and in the final state (at the top; late time) there are two photons (γ).
Other states are possible. For example, at LEP, , or are processes where the ''initial state'' is an electron and a positron colliding to produce an electron and a positron or two muons of opposite charge: the ''final states''.
Phenomenology
In the case of initial-state radiation, one of the incoming particles emit radiation (such as a photon, wlog
''Without loss of generality'' (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as ''without any loss of generality'' or ''with no loss of generality'') is a frequently used expression in mathematics. The term is used to indicate ...
) before the interaction with the others, so reduces the beam energy prior to the momentum transfer; while for final-state radiation, the scattered particles emit radiation, and since the momentum transfer has already occurred, the resulting beam energy decreases.
In analogy with bremsstrahlung
''Bremsstrahlung'' (), from "to brake" and "radiation"; i.e., "braking radiation" or "deceleration radiation", is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typicall ...
, if the radiation is electromagnetic it is sometimes called '' beam-strahlung'', and similarly can have ''gluon-strahlung'' (as shown in the Feynman figure with the gluon) as well in the case of QCD.
Computational issues
In these simple cases, no automatic calculation software packages are needed and the cross-section
Cross section may refer to:
* Cross section (geometry)
** Cross-sectional views in architecture & engineering 3D
*Cross section (geology)
* Cross section (electronics)
* Radar cross section, measure of detectability
* Cross section (physics)
**Ab ...
analytical expression can be easily derived at least for the lowest approximation: the Born approximation
Generally in scattering theory and in particular in quantum mechanics, the Born approximation consists of taking the incident field in place of the total field as the driving field at each point in the scatterer. The Born approximation is named a ...
also called the leading order or the tree level (as Feynman diagram
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduc ...
s have only trunk and branches, no loops). Interactions at higher energies open a large spectrum of possible final states and consequently increase the number of processes to compute, however.
The calculation of probability amplitude
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The modulus squared of this quantity represents a probability density.
Probability amplitudes provide a relationship between the quan ...
s in theoretical particle physics requires the use of rather large and complicated integrals over a large number of variables. These integrals do, however, have a regular structure, and may be represented graphically as Feynman diagrams. A Feynman diagram is a contribution of a particular class of particle paths, which join and split as described by the diagram. More precisely, and technically, a Feynman diagram is a graphical representation of a perturbative
In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for whi ...
contribution to the transition amplitude or correlation function of a quantum mechanical or statistical field theory. Within the canonical
The adjective canonical is applied in many contexts to mean "according to the canon" the standard, rule or primary source that is accepted as authoritative for the body of knowledge or literature in that context. In mathematics, "canonical example ...
formulation of quantum field theory, a Feynman diagram represents a term in the Wick's expansion of the perturbative S-matrix
In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
More forma ...
. Alternatively, the path integral formulation
The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional in ...
of quantum field theory represents the transition amplitude as a weighted sum of all possible histories of the system from the initial to the final state, in terms of either particles or fields. The transition amplitude is then given as the matrix element of the S-matrix between the initial and the final states of the quantum system.
References
{{reflist
External links
Initial and final state radiation in Z production
A Quantum Diaries Survivor.
Beam-Beam Interaction
D. Schulte
Quantum field theory