HOME





Non-Archimedean Ordered Field
In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Such fields will contain infinitesimal and infinitely large elements, suitably defined. Definition Suppose is an ordered field. We say that satisfies the Archimedean property if, for every two positive elements and of , there exists a natural number such that . Here, denotes the field element resulting from forming the sum of copies of the field element , so that is the sum of copies of . An ordered field that does not satisfy the Archimedean property is a non-Archimedean ordered field. Examples The fields of rational numbers and real numbers, with their usual orderings, satisfy the Archimedean property. Examples of non-Archimedean ordered fields are the Levi-Civita field, the hyperreal numbers, the surreal numbers, the Dehn planes, Dehn field, and the field of rational functions with real coefficients (where we define to mean that for large enough ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordered Field
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard orderings. Every subfield of an ordered field is also an ordered field in the inherited order. Every ordered field contains an ordered subfield that is isomorphic to the rational numbers. Every Dedekind-complete ordered field is isomorphic to the reals. Squares are necessarily non-negative in an ordered field. This implies that the complex numbers cannot be ordered since the square of the imaginary unit ''i'' is (which is negative in any ordered field). Finite fields cannot be ordered. Historically, the axiomatization of an ordered field was abstracted gradually from the real numbers, by mathematicians including David Hilbert, Otto Hölder and Hans Hahn. This grew eventually into the Artin–Schreier theory of ordered fields and f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-Euclidean Geometry
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement. In the former case, one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the planar algebras, which give rise to kinematic geometries that have also been called non-Euclidean geometry. Principles The essential difference between the metric geometries is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line and a point ''A'', which is not on , there is exactly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordered Algebraic Structures
Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of different ways * Hierarchy, an arrangement of items that are represented as being "above", "below", or "at the same level as" one another * an action or inaction that must be obeyed, mandated by someone in authority People * Orders (surname) Arts, entertainment, and media * ''Order'' (film), a 2005 Russian film * ''Order'' (album), a 2009 album by Maroon * "Order", a 2016 song from '' Brand New Maid'' by Band-Maid * ''Orders'' (1974 film), a film by Michel Brault * "Orders" (''Star Wars: The Clone Wars'') Business * Blanket order, a purchase order to allow multiple delivery dates over a period of time * Money order or postal order, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dedekind-complete
In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) is a fundamental property of the real numbers. More generally, a partially ordered set has the least-upper-bound property if every non-empty set (mathematics), subset of with an upper bound has a least upper bound, ''least'' upper bound (supremum) in . Not every (partially) ordered set has the least upper bound property. For example, the set \mathbb of all rational numbers with its natural order does ''not'' have the least upper bound property. The least-upper-bound property is one form of the Completeness of the real numbers, completeness axiom for the real numbers, and is sometimes referred to as Dedekind completeness.Willard says that an ordered space "X is Dedekind complete if every subset of X having an upper bound has a least upper bound." (pp. 124-5, Problem 17E.) It can be used to prove many of the fundamental results of real analysis, such as the intermedi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Power Series
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sums, etc.). A formal power series is a special kind of formal series, of the form \sum_^\infty a_nx^n=a_0+a_1x+ a_2x^2+\cdots, where the a_n, called ''coefficients'', are numbers or, more generally, elements of some ring, and the x^n are formal powers of the symbol x that is called an indeterminate or, commonly, a variable. Hence, power series can be viewed as a generalization of polynomials where the number of terms is allowed to be infinite, and differ from usual power series by the absence of convergence requirements, which implies that a power series may not represent a function of its variable. Formal power series are in one to one correspondence with their sequences of coefficients, but the two concepts must not be confused, sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernard Russell Gelbaum
Bernard Russell Gelbaum (died March 22, 2005, Laguna Beach, California) was a mathematician and academic administrator having served as a professor at the University of Minnesota, University of California, Irvine (where he was the first chair of the math department as well as acting dean and associate dean of physical sciences) and as well as emeritus professor in the Department of Mathematics, College of Arts and Sciences, University at Buffalo. When he arrived at Buffalo 1971, he served as vice president for academic affairs as well as being a math professor. Biography While still an undergraduate at Columbia University, Gelbaum served as a second lieutenant in the U.S. Signal Corps and was one of the first to liberate the Buchenwald concentration camp. He went on to get his doctorate at Princeton University in 1948. His dissertation, ''Expansions in Banach Spaces'', was supervised by Salomon Bochner Salomon Bochner (20 August 1899 – 2 May 1982) was a Galizien-born m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cauchy Complete
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots of elements from X of a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d(x_m, x_n) < r. Complete space A metric space (X, d) is complete if any of the following equivalent conditions are satisfied: #Every Cauchy seq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, Nigel Hitchin, and Thomas Schick. Currently, the managing editor of Mathematische Annalen is Yoshikazu Giga (University of Tokyo). Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947, the journal briefly ceased publication. References External links''Mathematische Annalen''homepage a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pi (mathematics)
The number (; spelled out as pi) is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter. It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining , to avoid relying on the definition of the length of a curve. The number is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as \tfrac are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an algebraic equation involving only finite sums, products, powers, and integers. The transcendence of implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of appear to be randomly distributed, but no proof of thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parallel Postulate
In geometry, the parallel postulate is the fifth postulate in Euclid's ''Elements'' and a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: If a line segment intersects two straight lines forming two interior angles on the same side that are less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles. This postulate does not specifically talk about parallel lines; it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 just before the five postulates. ''Euclidean geometry'' is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive. Eventually, it was discovered that inverting the postulate gave valid, albeit different geometries. A geometry where the parallel postulate do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Max Dehn
Max Wilhelm Dehn (November 13, 1878 – June 27, 1952) was a German mathematician most famous for his work in geometry, topology and geometric group theory. Dehn's early life and career took place in Germany. However, he was forced to retire in 1935 and eventually fled Germany in 1939 and emigrated to the United States.The story of his travel in 1940 from Norway via Stockholm, Moscow, trans-Siberian train, Vladivostok, Japan to San Francisco is described in Dehn was a student of David Hilbert, and in his habilitation in 1900 Dehn resolved Hilbert's third problem, making him the first to resolve one of Hilbert's problems, Hilbert's well-known 23 problems. Dehn's doctoral students include Ott-Heinrich Keller, Ruth Moufang, and Wilhelm Magnus; he also mentored mathematician Peter Nemenyi and the artists Dorothea Rockburne and Ruth Asawa. Biography Dehn was born to a family of Jewish origin in Hamburg, Imperial Germany. He studied the foundations of geometry with David Hilbert, Hil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]