Local Class Field Theory
   HOME





Local Class Field Theory
In mathematics, local class field theory, introduced by Helmut Hasse, is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite residue field: hence every local field is isomorphic (as a topological field) to the real numbers R, the complex numbers C, a finite extension of the ''p''-adic numbers Q''p'' (where ''p'' is any prime number), or the field of formal Laurent series F''q''((''T'')) over a finite field F''q''. Approaches to local class field theory Local class field theory gives a description of the Galois group ''G'' of the maximal abelian extension of a local field ''K'' via the reciprocity map which acts from the multiplicative group ''K''×=''K''\. For a finite abelian extension ''L'' of ''K'' the reciprocity map induces an isomorphism of the quotient group ''K''×/''N''(''L''×) of ''K''× by the norm group ''N''(''L''×) of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory. Definition Suppose that E is an extension of the field F (written as E/F and read "''E'' over ''F''). An automorphism of E/F is defined to be an automorphism of E that fixes F pointwise. In other words, an automorphism of E/F is an isomorphism \alpha:E\to E such that \alpha(x) = x for each x\in F. The set of all automorphisms of E/F forms a group with the operation of function composition. This group is sometimes denoted by \operatorname(E/F). If E/F is a Galois extension, then \op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Field
In algebra, a field ''k'' is perfect if any one of the following equivalent conditions holds: * Every irreducible polynomial over ''k'' has no multiple roots in any field extension ''F/k''. * Every irreducible polynomial over ''k'' has non-zero formal derivative. * Every irreducible polynomial over ''k'' is separable. * Every finite extension of ''k'' is separable. * Every algebraic extension of ''k'' is separable. * Either ''k'' has characteristic 0, or, when ''k'' has characteristic , every element of ''k'' is a ''p''th power. * Either ''k'' has characteristic 0, or, when ''k'' has characteristic , the Frobenius endomorphism is an automorphism of ''k''. * The separable closure of ''k'' is algebraically closed. * Every reduced commutative ''k''-algebra ''A'' is a separable algebra; i.e., A \otimes_k F is reduced for every field extension ''F''/''k''. (see below) Otherwise, ''k'' is called imperfect. In particular, all fields of characteristic zero and all finite fields ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Michiel Hazewinkel
Michiel Hazewinkel (born 22 June 1943) is a Dutch mathematician, and Emeritus Professor of Mathematics at the Centre for Mathematics and Computer Science and the University of Amsterdam, particularly known for his 1978 book ''Formal groups and applications'' and as editor of the ''Encyclopedia of Mathematics''. Biography Born in Amsterdam to Jan Hazewinkel and Geertrude Hendrika Werner, Hazewinkel studied at the University of Amsterdam. He received his BA in mathematics and physics in 1963, his MA in mathematics with a minor in philosophy in 1965 and his PhD in 1969 under supervision of Frans Oort and Albert Menalda for the thesis "Maximal Abelian Extensions of Local Fields".Michiel Hazewinkel, Curriculum vitae
at michhaz.home.xs4all.nl. Accessed September 10, 2013
After graduation Hazewinkel started h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jürgen Neukirch
Jürgen Neukirch (24 July 1937 – 5 February 1997) was a German mathematician known for his work on algebraic number theory. Education and career Neukirch received his diploma in mathematics in 1964 from the University of Bonn. For his Ph.D. thesis, written under the direction of Wolfgang Krull, he was awarded in 1965 the Felix-Hausdorff-Gedächtnis-Preis. He completed his habilitation one year later. From 1967 to 1969 he was guest professor at Queen's University in Kingston, Ontario and at the Massachusetts Institute of Technology in Cambridge, Massachusetts, after which he was a professor in Bonn. In 1971 he became a professor at the University of Regensburg. Contributions He is known for his work on the embedding problem in algebraic number theory, the Báyer–Neukirch theorem on special values of L-functions, arithmetic Riemann existence theorems and the Neukirch–Uchida theorem in birational anabelian geometry. He gave a simple description of the reciprocity maps i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brauer Group
In mathematics, the Brauer group of a field ''K'' is an abelian group whose elements are Morita equivalence classes of central simple algebras over ''K'', with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer. The Brauer group arose out of attempts to classify division algebras over a field. It can also be defined in terms of Galois cohomology. More generally, the Brauer group of a scheme is defined in terms of Azumaya algebras, or equivalently using projective bundles. Construction A central simple algebra (CSA) over a field ''K'' is a finite-dimensional associative ''K''-algebra ''A'' such that ''A'' is a simple ring and the center of ''A'' is equal to ''K''. Note that CSAs are in general ''not'' division algebras, though CSAs can be used to classify division algebras. For example, the complex numbers C form a CSA over themselves, but not over R (the center is C itself, hence too large to be CSA over R). The fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Cohomology
In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated with a field extension ''L''/''K'' acts in a natural way on some abelian groups, for example those constructed directly from ''L'', but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor. History The current theory of Galois cohomology came together around 1950, when it was realised that the Galois cohomology of ideal class groups in algebraic number theory was one way to formulate class field theory, at the time it was in the process of ridding itself of connections to L-functions. Galois cohomology makes no assumption that Galois groups are abelian groups, so this was a non-abelian theory. It was formulated abstractly as a theory of c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cup Product
In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p+q. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H^*(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944. Definition In singular cohomology, the cup product is a construction giving a product on the graded cohomology ring H^*(X) of a topological space X. The construction starts with a product of cochains: if \alpha^p is a p-cochain and \beta^q is a q-cochain, then :(\alpha^p \smile \beta^q)(\sigma) = \alpha^p(\sigma \circ \iota_) \cdot \beta^q(\sigma \circ \iota_) where \sigma is a singular (p+q)- simplex and \iota_S , S \subset \ is the canonical embeddi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cohomology
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are function (mathematics), functions on the group of chain (algebraic topology), chains in homology theory. From its start in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and abstract algebra, algebra. The terminology tends to hide the fact that cohomology, a Covariance and contravariance of functors, c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sergei Vostokov
Sergei Vladimirovich Vostokov (; 13 April 1945 – 7 March 2025) was a Russian mathematician who made major contributions to local number theory. He was a professor at St. Petersburg State University. Life and work Vostokov developed an important class of explicit formulas for the Hilbert symbol on local fields, which had a wide range of applications in number theory. His formulas generalize to formal groups. A generalization of his explicit formula to higher local fields is called the Vostokov symbol. It plays an important role in higher local class field theory. Vostokov died on 7 March 2025, at the age of 79. Awards For his 60th birthday, two special volumes of St Petersburg Mathematical Society of Vostokov were published in Russian and English by the American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Index Of A Subgroup
In mathematics, specifically group theory, the index of a subgroup ''H'' in a group ''G'' is the number of left Coset, cosets of ''H'' in ''G'', or equivalently, the number of right cosets of ''H'' in ''G''. The index is denoted , G:H, or [G:H] or (G:H). Because ''G'' is the disjoint union of the left cosets and because each left coset has the same cardinality, size as ''H'', the index is related to the order (group theory), orders of the two groups by the formula :, G, = , G:H, , H, (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index , G:H, measures the "relative sizes" of ''G'' and ''H''. For example, let G = \Z be the group of integers under addition, and let H = 2\Z be the subgroup consisting of the Parity (mathematics), even integers. Then 2\Z has two cosets in \Z, namely the set of even integers and the set of odd integers, so the index , \Z:2\Z, is 2. More generally, , \Z:n\Z, = n for any positive integer ''n''. When ''G'' i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]