Intransitive Dice
   HOME
*





Intransitive Dice
A set of dice is intransitive (or nontransitive) if it contains three dice, ''A'', ''B'', and ''C'', with the property that ''A'' rolls higher than ''B'' more than half the time, and ''B'' rolls higher than ''C'' more than half the time, but it is not true that ''A'' rolls higher than ''C'' more than half the time. In other words, a set of dice is intransitive if the binary relation – rolls a higher number than more than half the time – on its elements is not transitive. More simply, ''A'' normally beats ''B'', ''B'' normally beats ''C'', but ''A'' does not normally beat ''C''. It is possible to find sets of dice with the even stronger property that, for each die in the set, there is another die that rolls a higher number than it more than half the time. This is different in that instead of only "''A'' does not normally beat ''C''" it is now "''C'' normally beats ''A"'' Using such a set of dice, one can invent games which are biased in ways that people unused to intransiti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dice
Dice (singular die or dice) are small, throwable objects with marked sides that can rest in multiple positions. They are used for generating random values, commonly as part of tabletop games, including dice games, board games, role-playing games, and games of chance. A traditional die is a cube with each of its six faces marked with a different number of dots ( pips) from one to six. When thrown or rolled, the die comes to rest showing a random integer from one to six on its upper surface, with each value being equally likely. Dice may also have polyhedral or irregular shapes, may have faces marked with numerals or symbols instead of pips and may have their numbers carved out from the material of the dice instead of marked on it. Loaded dice are designed to favor some results over others for cheating or entertainment. History Dice have been used since before recorded history, and it is uncertain where they originated. It is theorized that dice developed from the practice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yahoo! Finance
Yahoo! Finance is a media property that is part of the Yahoo! network. It provides financial news, data and commentary including stock quotes, press releases, financial reports, and original content. It also offers some online tools for personal finance management. In addition to posting partner content from other web sites, it posts original stories by its team of staff journalists. It is ranked 20th by SimilarWeb on the list of largest news and media websites. In 2017 Yahoo! Finance added the feature to look at news surrounding cryptocurrency. It lists over 9,000 unique coins including Bitcoin and Ethereum. See also * Google Finance * MSN Money References * https://finance.yahoo.com/portfolios External links Yahoo! Finance Economics websites Finance Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and serv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Timothy Gowers
Sir William Timothy Gowers, (; born 20 November 1963) is a British mathematician. He is Professeur titulaire of the Combinatorics chair at the Collège de France, and director of research at the University of Cambridge and Fellow of Trinity College, Cambridge. In 1998, he received the Fields Medal for research connecting the fields of functional analysis and combinatorics. Education Gowers attended King's College School, Cambridge, as a choirboy in the King's College choir, and then Eton College as a King's Scholar, where he was taught mathematics by Norman Routledge. In 1981, Gowers won a gold medal at the International Mathematical Olympiad with a perfect score. He completed his PhD, with a dissertation on ''Symmetric Structures in Banach Spaces'' at Trinity College, Cambridge in 1990, supervised by Béla Bollobás. Career and research After his PhD, Gowers was elected to a Junior Research Fellowship at Trinity College. From 1991 until his return to Cambridge in 1995 he w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Voting Paradox
The Condorcet paradox (also known as the voting paradox or the paradox of voting) in social choice theory is a situation noted by the Marquis de Condorcet in the late 18th century, in which collective preferences can be cyclic, even if the preferences of individual voters are not cyclic. This is paradoxical, because it means that majority wishes can be in conflict with each other: Suppose majorities prefer, for example, candidate A over B, B over C, and yet C over A. When this occurs, it is because the conflicting majorities are each made up of different groups of individuals. Thus an expectation that transitivity on the part of all individuals' preferences should result in transitivity of societal preferences is an example of a fallacy of composition. The paradox was independently discovered by Lewis Carroll and Edward J. Nanson, but its significance was not recognized until popularized by Duncan Black in the 1940s. Example Suppose we have three candidates, A, B, and C, and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nontransitive Game
In game theory, an intransitive or non-transitive game is the one in which the various strategies produce one or more "loops" of preferences. In a non- transitive game in which strategy A is preferred over strategy B, and strategy B is preferred over strategy C, strategy A is ''not'' necessarily preferred over strategy C. A prototypical example non-transitive game is the game rock, paper, scissors which is explicitly constructed as a non-transitive game. In probabilistic games like Penney's game, the violation of transitivity results in a more subtle way, and is often presented as a probability paradox. Examples * Rock, paper, scissors * Penney's game * Intransitive dice * Street Fighter. The videogame franchise that introduced the common convention that block beats strike, strike beats throw, and throw beats block. * Halo Wars 2. A videogame noted for having a cycle in which aircraft beat landcraft, landcraft beat infantry, and infantry beat aircraft. See also * Stochastic trans ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Blotto Games
A Colonel Blotto game is a type of two-person constant-sum game in which the players (officers) are tasked to simultaneously distribute limited resources over several objects (battlefields). In the classic version of the game, the player devoting the most resources to a battlefield wins that battlefield, and the gain (or payoff) is equal to the total number of battlefields won. The game was first proposed by Émile Borel in 1921. In 1938 Borel and Ville published a particular optimal strategy (the "disk" solution). The game was studied after the Second World War by scholars in Operation Research, and became a classic in game theory. Gross and Wagner's 1950 research memorandum states Borel's optimal strategy, and coined the fictitious Colonel Blotto and Enemy names. For three battlefields or more, the space of pure strategies is multi-dimensional (two dimensions for three battlefields) and a mixed strategy is thus a probability distribution over a continuous set. The game is a rar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dice
Dice (singular die or dice) are small, throwable objects with marked sides that can rest in multiple positions. They are used for generating random values, commonly as part of tabletop games, including dice games, board games, role-playing games, and games of chance. A traditional die is a cube with each of its six faces marked with a different number of dots ( pips) from one to six. When thrown or rolled, the die comes to rest showing a random integer from one to six on its upper surface, with each value being equally likely. Dice may also have polyhedral or irregular shapes, may have faces marked with numerals or symbols instead of pips and may have their numbers carved out from the material of the dice instead of marked on it. Loaded dice are designed to favor some results over others for cheating or entertainment. History Dice have been used since before recorded history, and it is uncertain where they originated. It is theorized that dice developed from the practice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra and the only one that has fewer than 5 faces. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such nets. For any tetrahedron there exists a sphere (called the circumsphere) on which all four vertices lie, and another sphere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrical than others. The best known is the (convex, non- stellated) regular icosahedron—one of the Platonic solids—whose faces are 20 equilateral triangles. Regular icosahedra There are two objects, one convex and one nonconvex, that can both be called regular icosahedra. Each has 30 edges and 20 equilateral triangle faces with five meeting at each of its twelve vertices. Both have icosahedral symmetry. The term "regular icosahedron" generally refers to the convex variety, while the nonconvex form is called a ''great icosahedron''. Convex regular icosahedron The convex regular icosahedron is usually referred to simply as the ''regular icosahedron'', one of the five regular Platonic solids, and is represented by its Schläfli symbol , con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagonal Trapezohedron
In geometry, a pentagonal trapezohedron or deltohedron is the third in an infinite series of face-transitive polyhedra which are dual polyhedra to the antiprisms. It has ten faces (i.e., it is a decahedron) which are congruent kites. It can be decomposed into two pentagonal pyramids and a pentagonal antiprism in the middle. It can also be decomposed into two pentagonal pyramids and a dodecahedron in the middle. 10-sided dice The pentagonal trapezohedron was patented for use as a gaming die (i.e. "game apparatus") in 1906. These dice are used for role-playing games that use percentile-based skills; however, a twenty-sided die can be labeled with the numbers 0-9 twice to use for percentages instead. Subsequent patents on ten-sided dice have made minor refinements to the basic design by rounding or truncating the edges. This enables the die to tumble so that the outcome is less predictable. One such refinement became notorious at the 1980 Gen Con when the patent was incorrectl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Association Of America
The Mathematical Association of America (MAA) is a professional society that focuses on mathematics accessible at the undergraduate level. Members include university, college, and high school teachers; graduate and undergraduate students; pure and applied mathematicians; computer scientists; statisticians; and many others in academia, government, business, and industry. The MAA was founded in 1915 and is headquartered at 1529 18th Street, Northwest in the Dupont Circle neighborhood of Washington, D.C. The organization publishes mathematics journals and books, including the '' American Mathematical Monthly'' (established in 1894 by Benjamin Finkel), the most widely read mathematics journal in the world according to records on JSTOR. Mission and Vision The mission of the MAA is to advance the understanding of mathematics and its impact on our world. We envision a society that values the power and beauty of mathematics and fully realizes its potential to promote human flourishing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]