Higher-dimensional Gamma Matrices
   HOME
*





Higher-dimensional Gamma Matrices
In mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant wave equations for fermions (such as spinors) in arbitrary space-time dimensions, notably in string theory and supergravity. The Weyl–Brauer matrices provide an explicit construction of higher-dimensional gamma matrices for Weyl spinors. Gamma matrices also appear in generic settings in Riemannian geometry, particularly when a spin structure can be defined. Introduction Consider a space-time of dimension with the flat Minkowski metric, : \eta = \, \eta_\, = \text(+1, \dots, +1, -1, \dots, -1) ~, with p positive entries, q negative entries, p + q = d and . Set . The standard Dirac matrices correspond to taking and or . In higher (and lower) dimensions, one may define a group, the gamma group, behaving in the same fashion a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematical methods for application to problems in physics. The '' Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry and conserved quantities during the dynamical evoluti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chirality
Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from its mirror image; that is, it cannot be superimposed onto it. Conversely, a mirror image of an ''achiral'' object, such as a sphere, cannot be distinguished from the object. A chiral object and its mirror image are called ''enantiomorphs'' (Greek, "opposite forms") or, when referring to molecules, '' enantiomers''. A non-chiral object is called ''achiral'' (sometimes also ''amphichiral'') and can be superposed on its mirror image. The term was first used by Lord Kelvin in 1893 in the second Robert Boyle Lecture at the Oxford University Junior Scientific Club which was published in 1894: Human hands are perhaps the most recognized example of chirality. The left hand is a non-superimposable mirror image of the right hand; no matter ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Powerful P-group
In mathematics, in the field of group theory, especially in the study of ''p''-groups and pro-''p''-groups, the concept of powerful ''p''-groups plays an important role. They were introduced in , where a number of applications are given, including results on Schur multipliers. Powerful ''p''-groups are used in the study of automorphisms of ''p''-groups , the solution of the restricted Burnside problem , the classification of finite ''p''-groups via the coclass conjectures , and provided an excellent method of understanding analytic pro-''p''-groups . Formal definition A finite ''p''-group G is called powerful if the commutator subgroup ,G/math> is contained in the subgroup G^p = \langle g^p , g\in G\rangle for odd p, or if ,G/math> is contained in the subgroup G^4 for p=2. Properties of powerful ''p''-groups Powerful ''p''-groups have many properties similar to abelian groups, and thus provide a good basis for studying ''p''-groups. Every finite ''p''-group can be expres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutator Subgroup
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, G/N is abelian if and only if N contains the commutator subgroup of G. So in some sense it provides a measure of how far the group is from being abelian; the larger the commutator subgroup is, the "less abelian" the group is. Commutators For elements g and h of a group ''G'', the commutator of g and h is ,h= g^h^gh. The commutator ,h/math> is equal to the identity element ''e'' if and only if gh = hg , that is, if and only if g and h commute. In general, gh = hg ,h/math>. However, the notation is somewhat arbitrary and there is a non-equivalent variant definition for the commutator that has the inverses on the right hand side of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular P-group
In mathematical finite group theory, the concept of regular ''p''-group captures some of the more important properties of abelian ''p''-groups, but is general enough to include most "small" ''p''-groups. Regular ''p''-groups were introduced by . Definition A finite ''p''-group ''G'' is said to be regular if any of the following equivalent , conditions are satisfied: * For every ''a'', ''b'' in ''G'', there is a ''c'' in the derived subgroup ''H''′ of the subgroup ''H'' of ''G'' generated by ''a'' and ''b'', such that ''a''''p'' · ''b''''p'' = (''ab'')''p'' · ''c''''p''. * For every ''a'', ''b'' in ''G'', there are elements ''c''''i'' in the derived subgroup of the subgroup generated by ''a'' and ''b'', such that ''a''''p'' · ''b''''p'' = (''ab'')''p'' · ''c''1''p'' ⋯ ''c''k''p''. * For every ''a'', ''b'' in ''G'' and every positive integer ''n'', there are elements ''c''''i'' in the derived subgroup of the subgroup generated by ''a'' and ''b'' such that ''a''''q'' · ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




P-group
In mathematics, specifically group theory, given a prime number ''p'', a ''p''-group is a group in which the order of every element is a power of ''p''. That is, for each element ''g'' of a ''p''-group ''G'', there exists a nonnegative integer ''n'' such that the product of ''pn'' copies of ''g'', and not fewer, is equal to the identity element. The orders of different elements may be different powers of ''p''. Abelian ''p''-groups are also called ''p''-primary or simply primary. A finite group is a ''p''-group if and only if its order (the number of its elements) is a power of ''p''. Given a finite group ''G'', the Sylow theorems guarantee the existence of a subgroup of ''G'' of order ''pn'' for every prime power ''pn'' that divides the order of ''G''. Every finite ''p''-group is nilpotent. The remainder of this article deals with finite ''p''-groups. For an example of an infinite abelian ''p''-group, see Prüfer group, and for an example of an infinite simple ''p' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Center (group Theory)
In abstract algebra, the center of a group, , is the set of elements that commute with every element of . It is denoted , from German '' Zentrum,'' meaning ''center''. In set-builder notation, :. The center is a normal subgroup, . As a subgroup, it is always characteristic, but is not necessarily fully characteristic. The quotient group, , is isomorphic to the inner automorphism group, . A group is abelian if and only if . At the other extreme, a group is said to be centerless if is trivial; i.e., consists only of the identity element. The elements of the center are sometimes called central. As a subgroup The center of ''G'' is always a subgroup of . In particular: # contains the identity element of , because it commutes with every element of , by definition: , where is the identity; # If and are in , then so is , by associativity: for each ; i.e., is closed; # If is in , then so is as, for all in , commutes with : . Furthermore, the center of is alw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neutral Element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures such as groups and rings. The term ''identity element'' is often shortened to ''identity'' (as in the case of additive identity and multiplicative identity) when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with. Definitions Let be a set  equipped with a binary operation ∗. Then an element  of  is called a if for all  in , and a if for all  in . If is both a left identity and a right identity, then it is called a , or simply an . An identity with respect to addition is called an (often denoted as 0) and an identity with respect to multiplication is called a (often denoted as 1). These need not be ordinary addi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Presentation
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of relations among those generators. We then say ''G'' has presentation :\langle S \mid R\rangle. Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is isomorphic to the quotient of a free group on ''S'' by the normal subgroup generated by the relations ''R''. As a simple example, the cyclic group of order ''n'' has the presentation :\langle a \mid a^n = 1\rangle, where 1 is the group identity. This may be written equivalently as :\langle a \mid a^n\rangle, thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE