Harmonious Set
   HOME
*





Harmonious Set
In mathematics, a harmonious set is a subset of a locally compact abelian group on which every weak character may be uniformly approximated by strong characters. Equivalently, a suitably defined dual set is relatively dense in the Pontryagin dual of the group. This notion was introduced by Yves Meyer in 1970 and later turned out to play an important role in the mathematical theory of quasicrystals. Some related concepts are model sets, Meyer sets, and cut-and-project sets. Definition Let ''Λ'' be a subset of a locally compact abelian group ''G'' and ''Λ''''d'' be the subgroup of ''G'' generated by ''Λ'', with discrete topology. A weak character is a restriction to ''Λ'' of an algebraic homomorphism from ''Λ''''d'' into the circle group: : \chi: \Lambda_d\to\mathbf, \quad \chi\in\operatorname(\Lambda_d,\mathbf). A strong character is a restriction to ''Λ'' of a continuous homomorphism from ''G'' to T, that is an element of the Pontryag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Group
In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and only if its identity is isolated. A subgroup ''H'' of a topological group ''G'' is a discrete subgroup if ''H'' is discrete when endowed with the subspace topology from ''G''. In other words there is a neighbourhood of the identity in ''G'' containing no other element of ''H''. For example, the integers, Z, form a discrete subgroup of the reals, R (with the standard metric topology), but the rational numbers, Q, do not. Any group can be endowed with the discrete topology, making it a discrete topological group. Since every map from a discrete space is continuous, the topological homomorphisms between discrete groups are exactly the group homomorphisms between the underlying groups. Hence, there is an isomorphism between the category of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harmonic Analysis
Harmonic analysis is a branch of mathematics concerned with the representation of Function (mathematics), functions or signals as the Superposition principle, superposition of basic waves, and the study of and generalization of the notions of Fourier series and Fourier transforms (i.e. an extended form of Fourier analysis). In the past two centuries, it has become a vast subject with applications in areas as diverse as number theory, representation theory, signal processing, quantum mechanics, tidal analysis and neuroscience. The term "harmonics" originated as the Ancient Greek word ''harmonikos'', meaning "skilled in music". In physical eigenvalue problems, it began to mean waves whose frequencies are Multiple (mathematics), integer multiples of one another, as are the frequencies of the Harmonic series (music), harmonics of music notes, but the term has been generalized beyond its original meaning. The classical Fourier transform on R''n'' is still an area of ongoing research, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Almost Periodic Function
In mathematics, an almost periodic function is, loosely speaking, a function of a real number that is periodic to within any desired level of accuracy, given suitably long, well-distributed "almost-periods". The concept was first studied by Harald Bohr and later generalized by Vyacheslav Stepanov, Hermann Weyl and Abram Samoilovitch Besicovitch, amongst others. There is also a notion of almost periodic functions on locally compact abelian groups, first studied by John von Neumann. Almost periodicity is a property of dynamical systems that appear to retrace their paths through phase space, but not exactly. An example would be a planetary system, with planets in orbits moving with periods that are not commensurable (i.e., with a period vector that is not proportional to a vector of integers). A theorem of Kronecker from diophantine approximation can be used to show that any particular configuration that occurs once, will recur to within any specified accuracy: if we wait long eno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Salem Number
In mathematics, a Salem number is a real algebraic integer ''α'' > 1 whose conjugate roots all have absolute value no greater than 1, and at least one of which has absolute value exactly 1. Salem numbers are of interest in Diophantine approximation and harmonic analysis. They are named after Raphaël Salem. Properties Because it has a root of absolute value 1, the minimal polynomial for a Salem number must be reciprocal. This implies that 1/''α'' is also a root, and that all other roots have absolute value exactly one. As a consequence α must be a unit in the ring of algebraic integers, being of norm 1. Every Salem number is a Perron number (a real algebraic number greater than one all of whose conjugates have smaller absolute value). Relation with Pisot–Vijayaraghavan numbers The smallest known Salem number is the largest real root of Lehmer's polynomial (named after Derrick Henry Lehmer) :P(x) = x^ + x^9 -x^7 -x^6 -x^5 -x^4 -x^3 +x +1, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind usual rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. A prominent example of a field is the field of rational numbers, commonly denoted together with its usual operations of addition and multiplication. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pisot Number
Charles Pisot (2 March 1910 – 7 March 1984) was a French mathematician. He is chiefly recognized as one of the primary investigators of the numerical set associated with his name, the Pisot–Vijayaraghavan numbers. He followed the classical path of great French mathematicians by studying at the École Normale Supérieure on Ulm street, where he was received first at the agrégation in 1932. He then began his academic career at the Bordeaux University before being offered a chair at the Science Faculty of Paris and at the École Polytechnique. He was a member of Bourbaki. Also of interest is the recently solved Pisot conjecture on rational functions. (For a technical account and bibliography see Umberto Zannier's paper in the ''Annals of Mathematics The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Diophantine Approximation
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number ''a''/''b'' is a "good" approximation of a real number ''α'' if the absolute value of the difference between ''a''/''b'' and ''α'' may not decrease if ''a''/''b'' is replaced by another rational number with a smaller denominator. This problem was solved during the 18th century by means of continued fractions. Knowing the "best" approximations of a given number, the main problem of the field is to find sharp upper and lower bounds of the above difference, expressed as a function of the denominator. It appears that these bounds depend on the nature of the real numbers to be approximated: the lower bound for the approximation of a rational number by another rational number is larger than ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Besicovitch
Abram Samoilovitch Besicovitch (or Besikovitch) (russian: link=no, Абра́м Само́йлович Безико́вич; 23 January 1891 – 2 November 1970) was a Russian mathematician, who worked mainly in England. He was born in Berdyansk on the Sea of Azov (now in Ukraine) to a Karaite Jewish family. Life and career Abram Besicovitch studied under the supervision of Andrey Markov at the St. Petersburg University, graduating with a PhD in 1912. He then began research in probability theory. He converted to Eastern Orthodoxy, joining the Russian Orthodox Church, on marrying in 1916. He was appointed professor at the University of Perm in 1917, and was caught up in the Russian Civil War over the next two years. In 1920 he took a position at the Petrograd University. In 1924 he went to Copenhagen on a Rockefeller Fellowship, where he worked on almost periodic functions under Harald Bohr. A type of function space in that field now bears his name. After a visit to G.H. Hardy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Compact Abelian Group
In several mathematical areas, including harmonic analysis, topology, and number theory, locally compact abelian groups are abelian groups which have a particularly convenient topology on them. For example, the group of integers (equipped with the discrete topology), or the real numbers or the circle (both with their usual topology) are locally compact abelian groups. Definition and examples A topological group is called ''locally compact'' if the underlying topological space is locally compact and Hausdorff; the topological group is called ''abelian'' if the underlying group is abelian. Examples of locally compact abelian groups include: * \R^n for ''n'' a positive integer, with vector addition as group operation. * The positive real numbers \R^+ with multiplication as operation. This group is isomorphic to (\R, +) by the exponential map. * Any finite abelian group, with the discrete topology. By the structure theorem for finite abelian groups, all such groups are produc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metrizable
In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \mathcal) is said to be metrizable if there is a metric d : X \times X \to , \infty) such that the topology induced by d is \mathcal. Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable. Properties Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff paracompact spaces (and hence normal and Tychonoff) and first-countable. However, some properties of the metric, such as completeness, cannot be said to be inherited. This is also true of other structures linked to the metric. A metrizable uniform space, for example, may have a different set of contraction maps than a metric space to which it is homeomorphic. Metrization theorems One of the first widely recognized metrization theorems was . This states that every H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]