Heterocyst
Heterocysts or heterocytes are specialized nitrogen-fixing cells formed during nitrogen starvation by some filamentous cyanobacteria, such as '' Nostoc punctiforme'', ''Cylindrospermum stagnale'', and ''Anabaena sphaerica''. They fix nitrogen from dinitrogen (N2) in the air using the enzyme nitrogenase, in order to provide the cells in the filament with nitrogen for biosynthesis. Nitrogenase is inactivated by oxygen, so the heterocyst must create a microanaerobic environment. The heterocysts' unique structure and physiology require a global change in gene expression. For example, heterocysts: * produce three additional cell walls, including one of glycolipid that forms a hydrophobic barrier to oxygen * produce nitrogenase and other proteins involved in nitrogen fixation * degrade photosystem II, which produces oxygen * up-regulate glycolytic enzymes * produce proteins that scavenge any remaining oxygen * contain polar plugs composed of cyanophycin which slows down cell-to-cell ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anabaena
''Anabaena'' is a genus of filamentous cyanobacteria that exist as plankton. They are known for nitrogen-fixing abilities, and they form symbiotic relationships with certain plants, such as the mosquito fern. They are one of four genera of cyanobacteria that produce neurotoxins, which are harmful to local wildlife, as well as farm animals and pets. Production of these neurotoxins is assumed to be an input into its symbiotic relationships, protecting the plant from grazing pressure. A DNA sequencing project was undertaken in 1999, which mapped the complete genome of ''Anabaena'', which is 7.2 million base pairs long. The study focused on heterocysts, which convert nitrogen into ammonia. Certain species of ''Anabaena'' have been used on rice paddy fields, proving to be an effective natural fertilizer. Nitrogen fixation by ''Anabaena'' Under nitrogen-limiting conditions, vegetative cells differentiate into heterocysts at semiregular intervals along the filaments. Heterocyst c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nitrogen Fixation
Nitrogen fixation is a chemical process by which molecular nitrogen (), with a strong triple covalent bond, in the air is converted into ammonia () or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. Atmospheric nitrogen is molecular dinitrogen, a relatively nonreactive molecule that is metabolically useless to all but a few microorganisms. Biological nitrogen fixation or ''diazotrophy'' is an important microbials mediated process that converts dinitrogen (N2) gas to ammonia (NH3) using the nitrogenase protein complex (Nif). Nitrogen fixation is essential to life because fixed inorganic nitrogen compounds are required for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acids. As part of the nitrogen cycle, it is essential for agriculture and the manufacture of fertilizer. It is also, indirectly, relevant to the manufacture of all nitrogen chemical c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Filamentous Cyanobacteria
Cyanobacterial morphology refers to the form or shape of cyanobacteria. Cyanobacteria are a large and diverse phylum of bacteria defined by their unique combination of pigments and their ability to perform oxygenic photosynthesis. Cyanobacteria often live in colonial aggregates that can take a multitude of forms. Of particular interest among the many species of cyanobacteria are those that live colonially in elongate hair-like structures, known as trichomes. These filamentous species can contain hundreds to thousands of cells. They often dominate the upper layers of microbial mats found in extreme environments such as hot springs, hypersaline water, deserts and polar regions, as well as being widely distributed in more mundane environments. Many filamentous species are also motile, gliding along their long axis, and displaying photomovement by which a trichome modulates its gliding according to the incident light. The latter has been found to play an important role in guidi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cylindrospermum
''Cylindrospermum'' is a genus of filamentous cyanobacteria found in terrestrial and aquatic environments. In terrestrial ecosystems, ''Cylindrospermum'' is found in soils, and in aquatic ones, it commonly grows as part of the periphyton on aquatic plants. The genus is heterocystous (nitrogen-fixing Nitrogen fixation is a chemical process by which molecular nitrogen (), with a strong triple covalent bond, in the air is converted into ammonia () or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. Atmos ...) cyanobacteria. References Nostocaceae Cyanobacteria genera Taxa named by Friedrich Traugott Kützing {{cyanobacteria-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hormogonia
Hormogonia are motile filaments of cells formed by some cyanobacteria in the order Nostocales and Stigonematales. They are formed during vegetative reproduction in unicellular, filamentous cyanobacteria, and some may contain heterocysts and akinetes. Cyanobacteria differentiate into hormogonia when exposed to an environmental stress or when placed in new media. Hormogonium differentiation is crucial for the development of nitrogen-fixing plant cyanobacteria symbioses, in particular that between cyanobacteria of the genus ''Nostoc'' and their hosts. In response to a hormogonium-inducing factor (HIF) secreted by plant hosts, cyanobacterial symbionts differentiate into hormogonia and then dedifferentiate back into vegetative cells after about 96 hours. Hopefully, they have managed to reach the plant host by this time. The bacteria then differentiate specialized nitrogen-fixing cells called heterocysts and enter into a working symbiosis with the plant. Depending on species, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Akinete
An akinete is an enveloped, thick-walled, non-motile, dormant cell formed by filamentous, heterocyst-forming cyanobacteria under the order Nostocales and Stigonematales. Akinetes are resistant to cold and desiccation. They also accumulate and store various essential material, both of which allows the akinete to serve as a survival structure for up to many years. However, akinetes are not resistant to heat. Akinetes usually develop in strings with each cell differentiating after another and this occurs next to heterocysts if they are present. Development usually occurs during stationary phase and is triggered by unfavorable conditions such as insufficient light or nutrients, temperature, and saline levels in the environment. Once conditions become more favorable for growth, the akinete can then germinate back into a vegetative cell. Increased light intensity, nutrients availability, oxygen availability, and changes in salinity are important triggers for germination. In comparison t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyanophycin
Cyanophycin, also known as CGP (cyanophycin granule polypeptide) or multi-L-arginyl-poly (L-aspartic acid), is a non-protein, non-ribosomally produced amino acid polymer composed of an aspartic acid backbone and arginine side groups. Cyanophycin was first detected in 1887 by the Italian botanist ''Antonino Borzì'' and can be found in most cyanobacteria and a few heterotrophic bacteria such as ''Acinetobacter'' sp. Cyanophycin is largely insoluble under physiological conditions and is accumulated in the form of granules in the cytoplasm during phosphate or sulfur starvation, generally in the early and mid-stationary phase. It is used as a nitrogen- and possibly carbon-storage compound and also serves as a dynamic buffer for fixed nitrogen in cyanobacterial heterocysts. Nitrogen and carbon are mobilized from cyanophycin by intracellular cyanophycinase in the form of aspartate-arginine dipeptides. Cyanophycin is synthesized from arginine and aspartate in an ATP-dependent reaction ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nostoc Punctiforme
''Nostoc punctiforme'' is a species of filamentous cyanobacterium. Under non-limiting nutritional environmental conditions, its filaments are composed of photosynthetic vegetative cells; upon nutrient limitation, some of these cells undergo differentiation into heterocysts, akinetes or hormogonia. ''N. punctiforme'' is one of the ''Nostoc'' strains able to maintain diazotrophic symbiosis with higher plants such as the bryophytes '' Anthocerus punctatus'' and ''Blasia pusilla'', water ferns from the genus ''Azolla'', the cycads ''Macrozamia'' spp., and the angiosperm ''Gunnera''. Applications: Modified ''Nostoc punctiforme'' intein (Npu DnaE split intein) is used for a self-cleaving protein purification Protein purification is a series of processes intended to isolate one or a few proteins from a complex mixture, usually cells, tissues or whole organisms. Protein purification is vital for the specification of the function, structure and interact ... (e.g. ''i''CapTag™). ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Phenotype
In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological properties, its behavior, and the products of behavior. An organism's phenotype results from two basic factors: the expression of an organism's genetic code, or its genotype, and the influence of environmental factors. Both factors may interact, further affecting phenotype. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic. A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and then again in his 1982 book ''The Extended Phenotype'' suggested that one can regard bird nests and other built structures such as cad ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carbohydrate
In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or may not be different from ''n''), which does not mean the H has covalent bonds with O (for example with , H has a covalent bond with C but not with O). However, not all carbohydrates conform to this precise stoichiometric definition (e.g., uronic acids, deoxy-sugars such as fucose), nor are all chemicals that do conform to this definition automatically classified as carbohydrates (e.g. formaldehyde and acetic acid). The term is most common in biochemistry, where it is a synonym of saccharide (), a group that includes sugars, starch, and cellulose. The saccharides are divided into four chemical groups: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Monosaccharides and disaccharides, the smallest (lower molecular wei ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Evolution
Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation tends to exist within any given population as a result of genetic mutation and recombination. Evolution occurs when evolutionary processes such as natural selection (including sexual selection) and genetic drift act on this variation, resulting in certain characteristics becoming more common or more rare within a population. The evolutionary pressures that determine whether a characteristic is common or rare within a population constantly change, resulting in a change in heritable characteristics arising over successive generations. It is this process of evolution that has given rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules. The theory of evolution by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |