Gauge Gravitation Theory
   HOME
*





Gauge Gravitation Theory
In quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity. ''Gauge gravitation theory'' should not be confused with the similarly-named gauge theory gravity, which is a formulation of (classical) gravitation in the language of geometric algebra. Nor should it be confused with Kaluza–Klein theory, where the gauge fields are used to describe particle fields, but not gravity itself. Overview The first gauge model of gravity was suggested by Ryoyu Utiyama (1916–1990) in 1956 just two years after birth of the gauge theory itself. However, the initial attempts to construct the gauge theory of gravity by analogy with the gauge models of internal symmetries encountered a problem of treating general covariant transformations and establishing the gauge status of a pseudo-Riemannian metric (a tetrad field). In order to overcome this drawback, representing tetr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric-affine Gravitation Theory
In comparison with General Relativity, dynamic variables of metric-affine gravitation theory are both a pseudo-Riemannian metric and a general linear connection on a world manifold X. Metric-affine gravitation theory has been suggested as a natural generalization of Einstein–Cartan theory of gravity with torsion where a linear connection obeys the condition that a covariant derivative of a metric equals zero. Metric-affine gravitation theory straightforwardly comes from gauge gravitation theory where a general linear connection plays the role of a gauge field. Let TX be the tangent bundle over a manifold X provided with bundle coordinates (x^\mu,\dot x^\mu). A general linear connection on TX is represented by a connection tangent-valued form : \Gamma=dx^\lambda\otimes(\partial_\lambda +\Gamma_\lambda^\mu_\nu\dot x^\nu\dot\partial_\mu). It is associated to a principal connection on the principal frame bundle FX of frames in the tangent spaces to X whose structure group is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ashtekar Variables
In the ADM formulation of general relativity, spacetime is split into spatial slices and a time axis. The basic variables are taken to be the induced metric q_ (x) on the spatial slice and the metric's conjugate momentum K^ (x), which is related to the extrinsic curvature and is a measure of how the induced metric evolves in time. These are the metric canonical coordinates. In 1986 Abhay Ashtekar introduced a new set of canonical variables, Ashtekar (new) variables to represent an unusual way of rewriting the metric canonical variables on the three-dimensional spatial slices in terms of an SU(2) gauge field and its complementary variable. Overview Ashtekar variables provide what is called the connection representation of canonical general relativity, which led to the loop representation of quantum general relativity and in turn loop quantum gravity and quantum holonomy theory. Let us introduce a set of three vector fields E^a_i, i = 1,2,3 that are orthogonal, that is, :\de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalence Principle (geometric)
The equivalence principle is one of the corner-stones of gravitation theory. Different formulations of the equivalence principle are labeled ''weakest'', ''weak'', ''middle-strong'' and ''strong.'' All of these formulations are based on the empirical equality of inertial mass, gravitational active and passive charges. The ''weakest'' equivalence principle is restricted to the motion law of a probe point mass in a uniform gravitational field. Its localization is the ''weak'' equivalence principle that states the existence of a desired local inertial frame at a given world point. This is the case of equations depending on a gravitational field and its first order derivatives, e. g., the equations of mechanics of probe point masses, and the equations of electromagnetic and Dirac fermion fields. The ''middle-strong'' equivalence principle is concerned with any matter, except a gravitational field, while the ''strong'' one is applied to all physical laws. The above-mentioned varia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lorentz Group
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry: * The kinematical laws of special relativity * Maxwell's field equations in the theory of electromagnetism * The Dirac equation in the theory of the electron * The Standard Model of particle physics The Lorentz group expresses the fundamental symmetry of space and time of all known fundamental laws of nature. In small enough regions of spacetime where gravitational variances are negligible, physical laws are Lorentz invariant in the same manner as special relativity. Basic properties The Lorentz group is a subgroup of the Poincaré group—the group of all isometries of Minkowski spacetime. Lorentz transformations are, precisely, iso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nonlinear Realization
In mathematical physics, nonlinear realization of a Lie group ''G'' possessing a Cartan subgroup ''H'' is a particular induced representation of ''G''. In fact, it is a representation of a Lie algebra \mathfrak g of ''G'' in a neighborhood of its origin. A nonlinear realization, when restricted to the subgroup ''H'' reduces to a linear representation. A nonlinear realization technique is part and parcel of many field theories with spontaneous symmetry breaking, e.g., chiral models, chiral symmetry breaking, Goldstone boson theory, classical Higgs field theory, gauge gravitation theory and supergravity. Let ''G'' be a Lie group and ''H'' its Cartan subgroup which admits a linear representation in a vector space ''V''. A Lie algebra \mathfrak g of ''G'' splits into the sum \mathfrak g=\mathfrak h \oplus \mathfrak f of the Cartan subalgebra \mathfrak h of ''H'' and its supplement \mathfrak f, such that : mathfrak f,\mathfrak fsubset \mathfrak h, \qquad mathfrak f,\mathfrak h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Higgs Boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge, that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately. The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Its " Mexican hat-shaped" potential leads it to take a nonzero value ''everywhere'' (including otherwise empty space), which breaks the weak isospin symmetry of the electroweak interaction, and via the Higgs mechanism gives mass to many particles. Both the field and the boson are named after physicist Peter Higgs, who in 1964, along ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudo-Riemannian Manifold
In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike. Introduction Manifolds In differential geometry, a differentiable manifold is a space which is locally similar to a Euclidean space. In an ''n''-dimensional Euclidean space any point can be specified by ''n'' real numbers. These are called the coordinates of the point. An ''n''-dimensional differentiable manifold is a generalisation of ''n''-dimensional Euclidean space. In a manifold it may only be possible to d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


G-structure
In differential geometry, a ''G''-structure on an ''n''- manifold ''M'', for a given structure group ''G'', is a principal ''G''- subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''. The notion of ''G''-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(''n'')-structure defines a Riemannian metric, and for the special linear group an SL(''n'',R)-structure is the same as a volume form. For the trivial group, an -structure consists of an absolute parallelism of the manifold. Generalising this idea to arbitrary principal bundles on topological spaces, one can ask if a principal G-bundle over a group G "comes from" a subgroup H of G. This is called reduction of the structure group (to H). Several structures on manifolds, such as a complex structure, a symplectic structure, or a Kähler structure, are ''G''-structures with an additional integrabilit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Structure Group
In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a product space B \times F is defined using a continuous surjective map, \pi : E \to B, that in small regions of E behaves just like a projection from corresponding regions of B \times F to B. The map \pi, called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. In the ''trivial'' case, E is just B \times F, and the map \pi is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a man ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higgs Field (classical)
Spontaneous symmetry breaking, a vacuum Higgs field, and its associated fundamental particle the Higgs boson are quantum phenomena. A vacuum Higgs field is responsible for spontaneous symmetry breaking the gauge symmetries of fundamental interactions and provides the Higgs mechanism of generating mass of elementary particles. At the same time, classical gauge theory admits comprehensive geometric formulation where gauge fields are represented by connections on principal bundles. In this framework, spontaneous symmetry breaking is characterized as a reduction of the structure group G of a principal bundle P\to X to its closed subgroup H. By the well-known theorem, such a reduction takes place if and only if there exists a global section h of the quotient bundle P/G\to X. This section is treated as a classical Higgs field. A key point is that there exists a composite bundle P\to P/G\to X where P\to P/G is a principal bundle with the structure group H. Then matter fields, possess ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]