HOME
*





Higgs Field (classical)
Spontaneous symmetry breaking, a vacuum Higgs field, and its associated fundamental particle the Higgs boson are quantum phenomena. A vacuum Higgs field is responsible for spontaneous symmetry breaking the gauge symmetries of fundamental interactions and provides the Higgs mechanism of generating mass of elementary particles. At the same time, classical gauge theory admits comprehensive geometric formulation where gauge fields are represented by connections on principal bundles. In this framework, spontaneous symmetry breaking is characterized as a reduction of the structure group G of a principal bundle P\to X to its closed subgroup H. By the well-known theorem, such a reduction takes place if and only if there exists a global section h of the quotient bundle P/G\to X. This section is treated as a classical Higgs field. A key point is that there exists a composite bundle P\to P/G\to X where P\to P/G is a principal bundle with the structure group H. Then matter fields, possess ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spontaneous Symmetry Breaking
Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry. Overview By definition, spontaneous symmetry breaking requires the existence of physical laws (e.g. quantum mechanics) which are invariant under a symmetry transformation (such as translation or rotation), so that any pair of outcomes differing only by that transformation have the same probability distribution. For example if measurements of an observable at any two different positions have the same probability distribution, the observable has translational symmetry. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gravitational Field
In physics, a gravitational field is a model used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body. Thus, a gravitational field is used to explain gravitational phenomena, and is measured in newtons per kilogram (N/kg). Equivalently, it is measured in meters per second squared (m/s2). In its original concept, gravity was a force between point masses. Following Isaac Newton, Pierre-Simon Laplace attempted to model gravity as some kind of radiation field or fluid, and since the 19th century, explanations for gravity have usually been taught in terms of a field model, rather than a point attraction. In a field model, rather than two particles attracting each other, the particles distort spacetime via their mass, and this distortion is what is perceived and measured as a "force". In such a model one states that matter moves in certain ways in response to the curvature of spacetime, and that there is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gennadi Sardanashvily
Gennadi Sardanashvily (russian: Генна́дий Алекса́ндрович Сарданашви́ли; March 13, 1950 – September 1, 2016) was a theoretical physicist, a principal research scientist of Moscow State University. Biography Gennadi Sardanashvily graduated from Moscow State University (MSU) in 1973, he was a Ph.D. student of the Department of Theoretical Physics ( MSU) in 1973–76, where he held a position in 1976. He attained his Ph.D. degree in physics and mathematics from MSU, in 1980, with Dmitri Ivanenko as his supervisor, and his D.Sc. degree in physics and mathematics from MSU, in 1998. Gennadi Sardanashvily was the founder and Managing Editor (2003 - 2013) of the International Journal of Geometric Methods in Modern Physics (IJGMMP). He was a member of Lepage Research Institute (Czech Republic). Research area Gennadi Sardanashvily research area is geometric method in classical and quantum mechanics and field theory, gravitation theory. H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reduction Of The Structure Group
In differential geometry, a ''G''-structure on an ''n''-manifold ''M'', for a given structure group ''G'', is a principal ''G''- subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''. The notion of ''G''-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(''n'')-structure defines a Riemannian metric, and for the special linear group an SL(''n'',R)-structure is the same as a volume form. For the trivial group, an -structure consists of an absolute parallelism of the manifold. Generalising this idea to arbitrary principal bundles on topological spaces, one can ask if a principal G-bundle over a group G "comes from" a subgroup H of G. This is called reduction of the structure group (to H). Several structures on manifolds, such as a complex structure, a symplectic structure, or a Kähler structure, are ''G''-structures with an additional integrability c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gauge Gravitation Theory
In quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity. ''Gauge gravitation theory'' should not be confused with the similarly-named gauge theory gravity, which is a formulation of (classical) gravitation in the language of geometric algebra. Nor should it be confused with Kaluza–Klein theory, where the gauge fields are used to describe particle fields, but not gravity itself. Overview The first gauge model of gravity was suggested by Ryoyu Utiyama (1916–1990) in 1956 just two years after birth of the gauge theory itself. However, the initial attempts to construct the gauge theory of gravity by analogy with the gauge models of internal symmetries encountered a problem of treating general covariant transformations and establishing the gauge status of a pseudo-Riemannian metric (a tetrad field). In order to overcome this drawback, representing tetr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Gravitation Theory
In quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity. ''Gauge gravitation theory'' should not be confused with the similarly-named gauge theory gravity, which is a formulation of (classical) gravitation in the language of geometric algebra. Nor should it be confused with Kaluza–Klein theory, where the gauge fields are used to describe particle fields, but not gravity itself. Overview The first gauge model of gravity was suggested by Ryoyu Utiyama (1916–1990) in 1956 just two years after birth of the gauge theory itself. However, the initial attempts to construct the gauge theory of gravity by analogy with the gauge models of internal symmetries encountered a problem of treating general covariant transformations and establishing the gauge status of a pseudo-Riemannian metric (a tetrad field). In order to overcome this drawback, representing tetr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


World Manifold
In gravitation , gravitation theory, a world manifold endowed with some Lorentzian manifold, Lorentzian pseudo-Riemannian manifold, pseudo-Riemannian metric and an associated space-time structure is a spacetime, space-time. Gravitation theory is formulated as classical field theory on general covariant transformations, natural bundles over a world manifold. Topology A world manifold is a four-dimensional orientability, orientable real smooth manifold. It is assumed to be a Hausdorff space, Hausdorff and second-countable space, second countable topological space. Consequently, it is a locally compact space which is a union of a countable number of compact subsets, a separable space, a paracompact space, paracompact and completely regular space. Being paracompact, a world manifold admits a partition of unity by smooth functions. Paracompactness is an essential characteristic of a world manifold. It is necessary and sufficient in order that a world manifold admits a Riemannian mani ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudo-Riemannian Manifold
In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike. Introduction Manifolds In differential geometry, a differentiable manifold is a space which is locally similar to a Euclidean space. In an ''n''-dimensional Euclidean space any point can be specified by ''n'' real numbers. These are called the coordinates of the point. An ''n''-dimensional differentiable manifold is a generalisation of ''n''-dimensional Euclidean space. In a manifold it may only be possible to d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lagrangian System
In mathematics, a Lagrangian system is a pair , consisting of a smooth fiber bundle and a Lagrangian density , which yields the Euler–Lagrange differential operator acting on sections of . In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle over the time axis . In particular, if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones. Lagrangians and Euler–Lagrange operators A Lagrangian density (or, simply, a Lagrangian) of order is defined as an -form, , on the -order jet manifold of . A Lagrangian can be introduced as an element of the variational bicomplex of the differential graded algebra of exterior forms on jet manifolds of . The coboundary operator of this bicomplex contains the variational operator which, acting on , defines the associated Euler–Lagrange operator . In coordinates Given bundle coordinates on a fiber bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Higgs Field
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge, that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately. The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Its " Mexican hat-shaped" potential leads it to take a nonzero value ''everywhere'' (including otherwise empty space), which breaks the weak isospin symmetry of the electroweak interaction, and via the Higgs mechanism gives mass to many particles. Both the field and the boson are named after physicist Peter Higgs, who in 1964, alo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associated Bundle
In mathematics, the theory of fiber bundles with a structure group G (a topological group) allows an operation of creating an associated bundle, in which the typical fiber of a bundle changes from F_1 to F_2, which are both topological spaces with a group action of G. For a fiber bundle ''F'' with structure group ''G'', the transition functions of the fiber (i.e., the cocycle) in an overlap of two coordinate systems ''U''α and ''U''β are given as a ''G''-valued function ''g''αβ on ''U''α∩''U''β. One may then construct a fiber bundle ''F''′ as a new fiber bundle having the same transition functions, but possibly a different fiber. An example A simple case comes with the Möbius strip, for which G is the cyclic group of order 2, \mathbb_2. We can take as F any of: the real number line \mathbb, the interval 1,\ 1/math>, the real number line less the point 0, or the two-point set \. The action of G on these (the non-identity element acting as x\ \rightarrow\ -x in each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]