Global Spacetime Structure
Spacetime topology is the Topological space, topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Pseudo-Riemannian_manifold#Lorentzian_manifold, Lorentzian manifold (a spacetime) and the concepts of topology thus become important in analysing local as well as global aspects of spacetime. The study of spacetime topology is especially important in physical cosmology. Types of topology There are two main types of topology for a spacetime ''M''. Manifold topology As with any manifold, a spacetime possesses a natural manifold topology. Here the open sets are the image of open sets in \mathbb^4. Path or Zeeman topology ''Definition'':Luca Bombelli website The topology in which a subse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rapidity
In special relativity, the classical concept of velocity is converted to rapidity to accommodate the limit determined by the speed of light. Velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with distance and time coordinates. Using the inverse hyperbolic function , the rapidity corresponding to velocity is where is the speed of light. For low speeds, by the small-angle approximation, is approximately . Since in relativity any velocity is constrained to the interval the ratio satisfies . The inverse hyperbolic tangent has the unit interval for its domain and the whole real line for its image; that is, the interval maps ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homeomorphism
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. Very roughly speaking, a topological space is a geometric object, and a homeomorphism results from a continuous deformation of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this description can be misleading. Some continuous deformations do not produce homeomorphisms, such as the deformation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Split-complex Number
In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit satisfying j^2=1, where j \neq \pm 1. A split-complex number has two real number components and , and is written z=x+yj . The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number with its conjugate is N(z) := zz^* = x^2 - y^2, an isotropic quadratic form. The collection of all split-complex numbers z=x+yj for forms an algebra over the field of real numbers. Two split-complex numbers and have a product that satisfies N(wz)=N(w)N(z). This composition of over the algebra product makes a composition algebra. A similar algebra based on and component-wise operations of addition and multiplication, where is the quadratic form on also forms a quadratic space. The ring isomorphism \begin D &\to \mathbb^2 \\ x + yj &\mapsto (x - y, x + y) \end is an isometry of quadratic spaces. Split-complex numbers have many other na ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polar Decomposition
In mathematics, the polar decomposition of a square real or complex matrix A is a factorization of the form A = U P, where U is a unitary matrix, and P is a positive semi-definite Hermitian matrix (U is an orthogonal matrix, and P is a positive semi-definite symmetric matrix in the real case), both square and of the same size. If a real n \times n matrix A is interpreted as a linear transformation of n-dimensional space \mathbb^n, the polar decomposition separates it into a rotation or reflection U of \mathbb^n and a scaling of the space along a set of n orthogonal axes. The polar decomposition of a square matrix A always exists. If A is invertible, the decomposition is unique, and the factor P will be positive-definite. In that case, A can be written uniquely in the form A = U e^X, where U is unitary, and X is the unique self-adjoint logarithm of the matrix P. This decomposition is useful in computing the fundamental group of (matrix) Lie groups. The polar decompos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aleksandr Danilovich Aleksandrov
Aleksandr Danilovich Aleksandrov (; 4 August 1912 – 27 July 1999) was a Soviet and Russian mathematician, physicist, philosopher and mountaineer. Personal life Aleksandr Aleksandrov was born in 1912 in Volyn, Ryazan Oblast. His father was a headmaster of a secondary school in St Petersburg and his mother a teacher at said school, thus the young Alekandrov spent a majority of his childhood in the city. His family was old Russian nobility—students noted ancestral portraits which hung in his office. His sisters were Soviet botanist Vera Danilovna Aleksandrov (RU) and Maria Danilovna Aleksandrova, author of the first monograph on gerontopsychology in the USSR. In 1937, he married a student of the Faculty of Physics, Marianna Leonidovna Georg. Together they had two children: Daria (b. 1948) and Daniil (RU) (b. 1957). In 1980, he married Svetlana Mikhailovna Vladimirova (nee Bogacheva). In 1951 he became a member of the Communist Party. Alekandrov had a personal love for po ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pavel Alexandrov
Pavel Sergeyevich Alexandrov (), sometimes romanized ''Paul Alexandroff'' (7 May 1896 – 16 November 1982), was a Soviet mathematician. He wrote roughly three hundred papers, making important contributions to set theory and topology. In topology, the Alexandroff compactification and the Alexandrov topology are named after him. Biography Alexandrov attended Moscow State University where he was a student of Dmitri Egorov and Nikolai Luzin. Together with Pavel Urysohn, he visited the University of Göttingen in 1923 and 1924. After getting his Ph.D. in 1927, he continued to work at Moscow State University and also joined the Steklov Institute of Mathematics. He was made a member of the Russian Academy of Sciences in 1953. Personal life Luzin challenged Alexandrov to determine if the continuum hypothesis is true. This still unsolved problem was too much for Alexandrov and he had a creative crisis at the end of 1917. The failure was a heavy blow for Alexandrov: "It became ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexandrov Topology
In general topology, an Alexandrov topology is a topology in which the intersection of an ''arbitrary'' family of open sets is open (while the definition of a topology only requires this for a ''finite'' family). Equivalently, an Alexandrov topology is one whose open sets are the upper sets for some preorder on the space. Spaces with an Alexandrov topology are also known as Alexandrov-discrete spaces or finitely generated spaces. The latter name stems from the fact that their topology is uniquely determined by the family of all finite subspaces. This makes them a generalization of finite topological spaces. Alexandrov-discrete spaces are named after the Russian topologist Pavel Alexandrov. They should not be confused with Alexandrov spaces from Riemannian geometry introduced by the Russian mathematician Aleksandr Danilovich Aleksandrov. Characterizations of Alexandrov topologies Alexandrov topologies have numerous characterizations. In a topological space X, the followi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Causality Conditions
Causality conditions are classifications of Lorentzian manifolds according to the types of causal structures they admit. In the study of spacetimes, there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 1970s.E. Minguzzi and M. Sanchez, ''The causal hierarchy of spacetimes'' in H. Baum and D. Alekseevsky (eds.), vol. Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., (Eur. Math. Soc. Publ. House, Zurich, 2008), pp. 299–358, , arXiv:gr-qc/0609119 The weaker the causality condition on a spacetime, the more ''unphysical'' the spacetime is. Spacetimes with closed timelike curves, for example, present severe interpretational difficulties. See the grandfather paradox. It is reasonable to believe that any physical spacetime will satisfy the strongest causality condition: global hyperbolicity. For such spacetimes the e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Comparison Of Topologies
In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies. Definition A topology on a set may be defined as the collection of subsets which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following, it doesn't matter which definition is used.) For definiteness the reader should think of a topology as the family of open sets of a topological space, since that is the standard meaning of the word "topology". Let ''τ''1 and ''τ''2 be two topologies on a set ''X'' such that ''τ''1 is contained in ''τ''2: :\tau_1 \subseteq \tau_2. That is, every element of ''τ''1 is also an element of ''τ''2. Then the topology ''τ''1 is said to b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Causal Structure
In mathematical physics, the causal structure of a Lorentzian manifold describes the possible causal relationships between points in the manifold. Lorentzian manifolds can be classified according to the types of causal structures they admit (''causality conditions''). Introduction In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold. The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events. The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature. Discussions of the causal structure for such manifolds must be phrased in terms of smooth curves joining pairs of points. Conditions on the tangent vectors of the curves then define the causal relationships. Tangent vectors If \,(M,g) is a Lorentzian manifold (for metric g on manifold M) then the nonzero tangent vectors at ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |