HOME
*





Causality Conditions
In the study of Lorentzian manifold spacetimes there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 1970s.E. Minguzzi and M. Sanchez, ''The causal hierarchy of spacetimes'' in H. Baum and D. Alekseevsky (eds.), vol. Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., (Eur. Math. Soc. Publ. House, Zurich, 2008), pp. 299–358, , arXiv:gr-qc/0609119 The weaker the causality condition on a spacetime, the more ''unphysical'' the spacetime is. Spacetimes with closed timelike curves, for example, present severe interpretational difficulties. See the grandfather paradox. It is reasonable to believe that any physical spacetime will satisfy the strongest causality condition: global hyperbolicity. For such spacetimes the equations in general relativity can be posed as an initial value problem on a Cauchy surface. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lorentzian Manifold
In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike. Introduction Manifolds In differential geometry, a differentiable manifold is a space which is locally similar to a Euclidean space. In an ''n''-dimensional Euclidean space any point can be specified by ''n'' real numbers. These are called the coordinates of the point. An ''n''-dimensional differentiable manifold is a generalisation of ''n''-dimensional Euclidean space. In a manifold it may only be possible to defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Werner Israel
Werner Israel, (October 4, 1931 – May 18, 2022) was a physicist, author, researcher, and professor at the University of Victoria. Biography Born in Berlin, Germany and raised in Cape Town, South Africa, he first received his B.Sc. in 1951 and later his M.Sc. in 1954 from the University of Cape Town. From 1956 to 1958, he worked as a scholar at the Dublin Institute for Avanced Studies. He then went on to receive his Ph.D. in 1960 from Trinity College, Dublin. In 1990, together with Eric Poisson, Israel pioneered the study of black hole interiors and, following up a suggestion of Roger Penrose, discovered the phenomenon of mass inflation (which should not be confused with inflationary cosmology). He was a Fellow in the cosmology programme of the Canadian Institute for Advanced Research. Until his retirement in 1996 he was a professor in the Department of Physics at the University of Alberta. In 1996 he was appointed Adjunct Professor of Physics and Astronomy at the Univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




George Francis Rayner Ellis
George Francis Rayner Ellis, Fellow of the Royal Society, FRS, Hon. FRSSAf (born 11 August 1939), is the emeritus distinguished professor of complex systems in the Department of Mathematics and Applied Mathematics at the University of Cape Town in South Africa. He co-authored ''The Large Scale Structure of Space-Time'' with University of Cambridge physicist Stephen Hawking, published in 1973, and is considered one of the world's leading theorists in physical cosmology, cosmology. From 1989 to 1992 he served as president of the International Society on General Relativity and Gravitation. He is a past president of the International Society for Science and Religion. He is an A-rated researcher with the National Research Foundation of South Africa, NRF. Ellis, an active Quaker, was a vocal opponent of apartheid during the National Party (South Africa), National Party reign in the 1970s and 1980s, and it is during this period that Ellis's research focused on the more philosophical as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Timelike Curve
In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was first discovered by Willem Jacob van Stockum in 1937 and later confirmed by Kurt Gödel in 1949,Stephen Hawking, '' My Brief History'', chapter 11 who discovered a solution to the equations of general relativity (GR) allowing CTCs known as the Gödel metric; and since then other GR solutions containing CTCs have been found, such as the Tipler cylinder and traversable wormholes. If CTCs exist, their existence would seem to imply at least the theoretical possibility of time travel backwards in time, raising the spectre of the grandfather paradox, although the Novikov self-consistency principle seems to show that such paradoxes could be avoided. Some physicists speculate that the CTCs which appear in certain GR solutions might be ruled out by a future theory of quantum gravity whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Globally Hyperbolic Manifold
In mathematical physics, global hyperbolicity is a certain condition on the causal structure of a spacetime manifold (that is, a Lorentzian manifold). It's called hyperbolic because the fundamental condition that generates the Lorentzian manifold is * t^2 - r^2 = T^2 (t and r being the usual variables of time and radius) which is one of the usual equations representing an hyperbola. But this expression is only true relative to the ordinary origin; this article then outline bases for generalizing the concept to any pair of points in spacetime. This is relevant to Albert Einstein's theory of general relativity, and potentially to other metric gravitational theories. Definitions There are several equivalent definitions of global hyperbolicity. Let ''M'' be a smooth connected Lorentzian manifold without boundary. We make the following preliminary definitions: * ''M'' is ''non-totally vicious'' if there is at least one point such that no closed timelike curve passes through it. * '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive differently where and when events occur. Until the 20th century, it was assumed that the three-dimensional geometry of the universe (its spatial expression in terms of coordinates, distances, and directions) was independent of one-dimensional time. The physicist Albert Einstein helped develop the idea of spacetime as part of his theory of relativity. Prior to his pioneering work, scientists had two separate theories to explain physical phenomena: Isaac Newton's laws of physics described the motion of massive objects, while James Clerk Maxwell's electromagnetic models explained the properties of light. However, in 1905, Einstein based a work on special relativity on two postulates: * The laws of physics are invariant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Line
In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a point. The integers are often shown as specially-marked points evenly spaced on the line. Although the image only shows the integers from –3 to 3, the line includes all real numbers, continuing forever in each direction, and also numbers that are between the integers. It is often used as an aid in teaching simple addition and subtraction, especially involving negative numbers. In advanced mathematics, the number line can be called as a real line or real number line, formally defined as the set (mathematics), set of all real numbers, viewed as a geometry, geometric space (mathematics), space, namely the Euclidean space of dimension one. It can be thought of as a vector space (or affine space), a metric space, a topological ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Robert Geroch
Robert Geroch (born 1 June 1942 in Akron, Ohio) is an American theoretical physicist and professor at the University of Chicago. He has worked prominently on general relativity and mathematical physics and has promoted the use of category theory in mathematics and physics. He was the Ph.D. supervisor for Abhay Ashtekar, Basilis Xanthopoulos and Gary Horowitz. He also proved an important theorem in spin geometry. Education Geroch obtained his Ph.D. degree from Princeton University in 1967 under the supervision of John Archibald Wheeler, with a thesis on ''Singularities in the spacetime of general relativity: their definition, existence, and local characterization''. Writings Chapters *Geroch R.P. (1977) "Asymptotic Structure of Space-Time", p.1--105 in: Esposito F.P., Witten L. (eds) Asymptotic Structure of Space-Time. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2343-3_1 *Horowitz, G.T and Geroch, R.P. (1979) "Global structure of spacetimes", p.212--29 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]