Rapidity
   HOME

TheInfoList



OR:

In relativity, rapidity is commonly used as a measure for
relativistic velocity Relativistic speed refers to speed at which relativistic effects become significant to the desired accuracy of measurement of the phenomenon being observed. Relativistic effects are those discrepancies between values calculated by models consideri ...
. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
and
time Time is the continued sequence of existence and event (philosophy), events that occurs in an apparently irreversible process, irreversible succession from the past, through the present, into the future. It is a component quantity of various me ...
coordinates. For one-dimensional motion, rapidities are additive whereas velocities must be combined by Einstein's
velocity-addition formula In relativistic physics, a velocity-addition formula is a three-dimensional equation that relates the velocities of objects in different reference frames. Such formulas apply to successive Lorentz transformations, so they also relate different fra ...
. For low speeds, rapidity and velocity are proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite. Using the inverse hyperbolic function , the rapidity corresponding to velocity is where ''c'' is the velocity of light. For low speeds, is approximately . Since in relativity any velocity is constrained to the interval the ratio satisfies . The inverse hyperbolic tangent has the unit interval for its
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined ** Domain of definition of a partial function ** Natural domain of a partial function **Domain of holomorphy of a function * ...
and the whole
real line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
for its
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensio ...
; that is, the interval maps onto .


History

In 1908 Hermann Minkowski explained how the Lorentz transformation could be seen as simply a hyperbolic rotation of the spacetime coordinates, i.e., a rotation through an imaginary angle. This angle therefore represents (in one spatial dimension) a simple additive measure of the velocity between frames. The rapidity parameter replacing velocity was introduced in 1910 by
Vladimir Varićak Vladimir Varićak (sometimes also spelled Vladimir Varičak; March 1, 1865 – January 17, 1942) was a Croatian mathematician and theoretical physicist of Serbian origin.Buljan I.; Paušek-Baždar, Snježana. "Hrvatski matematički velikan koj ...
and by E. T. Whittaker. The parameter was named ''rapidity'' by
Alfred Robb Alfred Arthur Robb FRS (18 January 1873 in Belfast – 14 December 1936 in Castlereagh) was a Northern Irish physicist. Biography Robb studied at Queen's College, Belfast (BA 1894) and at St John's College, Cambridge (Tripos 1897, MA 1901). ...
(1911) and this term was adopted by many subsequent authors, such as Silberstein (1914), Morley (1936) and Rindler (2001).


Area of a hyperbolic sector

The quadrature of the hyperbola ''xy'' = 1 by Gregoire de Saint-Vincent established the natural logarithm as the area of a hyperbolic sector, or an equivalent area against an asymptote. In spacetime theory, the connection of events by light divides the universe into Past, Future, or Elsewhere based on a Here and Now . On any line in space, a light beam may be directed left or right. Take the x-axis as the events passed by the right beam and the y-axis as the events of the left beam. Then a resting frame has
time Time is the continued sequence of existence and event (philosophy), events that occurs in an apparently irreversible process, irreversible succession from the past, through the present, into the future. It is a component quantity of various me ...
along the diagonal ''x'' = ''y''. The rectangular hyperbola ''xy'' = 1 can be used to gauge velocities (in the first quadrant). Zero velocity corresponds to (1,1). Any point on the hyperbola has coordinates ( e^w , \ e^ ) where w is the rapidity, and is equal to the area of the hyperbolic sector from (1,1) to these coordinates. Many authors refer instead to the
unit hyperbola In geometry, the unit hyperbola is the set of points (''x'',''y'') in the Cartesian plane that satisfy the implicit equation x^2 - y^2 = 1 . In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an ''alternative ra ...
x^2 - y^2 , using rapidity for parameter, as in the standard
spacetime diagram A spacetime diagram is a graphical illustration of the properties of space and time in the special theory of relativity. Spacetime diagrams allow a qualitative understanding of the corresponding phenomena like time dilation and length contracti ...
. There the axes are measured by clock and meter-stick, more familiar benchmarks, and the basis of spacetime theory. So the delineation of rapidity as hyperbolic parameter of beam-space is a reference to the seventeenth century origin of our precious
transcendental function In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed ...
s, and a supplement to spacetime diagramming.


Lorentz boost

The rapidity arises in the linear representation of a
Lorentz boost In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation ...
as a vector-matrix product : \begin c t' \\ x' \end = \begin \cosh w & -\sinh w \\ -\sinh w & \cosh w \end \begin ct \\ x \end = \mathbf \Lambda (w) \begin ct \\ x \end. The matrix is of the type \begin p & q \\ q & p \end with and satisfying , so that lies on the
unit hyperbola In geometry, the unit hyperbola is the set of points (''x'',''y'') in the Cartesian plane that satisfy the implicit equation x^2 - y^2 = 1 . In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an ''alternative ra ...
. Such matrices form the indefinite orthogonal group O(1,1) with one-dimensional Lie algebra spanned by the anti-diagonal unit matrix, showing that the rapidity is the coordinate on this Lie algebra. This action may be depicted in a
spacetime diagram A spacetime diagram is a graphical illustration of the properties of space and time in the special theory of relativity. Spacetime diagrams allow a qualitative understanding of the corresponding phenomena like time dilation and length contracti ...
. In matrix exponential notation, can be expressed as \mathbf \Lambda (w) = e^, where is the negative of the anti-diagonal unit matrix : \mathbf Z = \begin 0 & -1 \\ -1 & 0 \end . It is not hard to prove that :\mathbf(w_1 + w_2) = \mathbf(w_1)\mathbf(w_2). This establishes the useful additive property of rapidity: if , and are frames of reference, then : w_= w_ + w_ where denotes the rapidity of a frame of reference relative to a frame of reference . The simplicity of this formula contrasts with the complexity of the corresponding
velocity-addition formula In relativistic physics, a velocity-addition formula is a three-dimensional equation that relates the velocities of objects in different reference frames. Such formulas apply to successive Lorentz transformations, so they also relate different fra ...
. As we can see from the Lorentz transformation above, the Lorentz factor identifies with :\gamma = \frac \equiv \cosh w, so the rapidity is implicitly used as a hyperbolic angle in the Lorentz transformation expressions using and β. We relate rapidities to the
velocity-addition formula In relativistic physics, a velocity-addition formula is a three-dimensional equation that relates the velocities of objects in different reference frames. Such formulas apply to successive Lorentz transformations, so they also relate different fra ...
:u = \frac by recognizing :\beta_i = \frac = \tanh and so : \begin \tanh w &= \frac \\ &= \tanh(w_1+ w_2) \end Proper acceleration (the acceleration 'felt' by the object being accelerated) is the rate of change of rapidity with respect to proper time (time as measured by the object undergoing acceleration itself). Therefore, the rapidity of an object in a given frame can be viewed simply as the velocity of that object as would be calculated non-relativistically by an inertial guidance system on board the object itself if it accelerated from rest in that frame to its given speed. The product of and appears frequently, and is from the above arguments :\begin \beta \gamma &= \tanh w \cosh w = \sinh w \end


Exponential and logarithmic relations

From the above expressions we have :e^ = \gamma(1 + \beta) = \gamma \left( 1 + \frac \right) = \sqrt \frac, and thus :e^ = \gamma(1 - \beta) = \gamma \left( 1 - \frac \right) = \sqrt \frac. or explicitly :w = \ln \left gamma(1 + \beta)\right= -\ln \left gamma(1 - \beta)\right \, . The Doppler-shift factor associated with rapidity is k = e^w.


In experimental particle physics

The energy and scalar momentum of a particle of non-zero (rest) mass are given by: :E = \gamma mc^2 :, \mathbf p , = \gamma mv. With the definition of : w = \operatorname \frac, and thus with :\cosh w = \cosh \left( \operatorname \frac \right) = \frac = \gamma :\sinh w = \sinh \left( \operatorname \frac \right) = \frac = \beta \gamma , the energy and scalar momentum can be written as: :E = m c^2 \cosh w :, \mathbf p , = m c \, \sinh w. So, rapidity can be calculated from measured energy and momentum by : w = \operatorname \frac= \frac \ln \frac= \ln \frac ~. However, experimental particle physicists often use a modified definition of rapidity relative to a beam axis :y = \frac \ln \frac , where is the component of momentum along the beam axis.Amsler, C. ''et al.''
"The Review of Particle Physics"
''Physics Letters B'' 667 (2008) 1, Section 38.5.2
This is the rapidity of the boost along the beam axis which takes an observer from the lab frame to a frame in which the particle moves only perpendicular to the beam. Related to this is the concept of
pseudorapidity In experimental particle physics, pseudorapidity, \eta, is a commonly used spatial coordinate describing the angle of a particle relative to the beam axis. It is defined as :\eta \equiv -\ln\left tan\left(\frac\right)\right where \theta is the ...
. Rapidity relative to a beam axis can also be expressed as :y = \ln \frac ~.


See also

* Bondi k-calculus * Lorentz transformation *
Pseudorapidity In experimental particle physics, pseudorapidity, \eta, is a commonly used spatial coordinate describing the angle of a particle relative to the beam axis. It is defined as :\eta \equiv -\ln\left tan\left(\frac\right)\right where \theta is the ...
* Proper velocity *
Theory of relativity The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in ...


Remarks


Notes and references

* Varićak V (1910), (1912), (1924) See Vladimir Varićak#Publications * * * Borel E (1913) La théorie de la relativité et la cinématique, Comptes Rendus Acad Sci Paris 156 215-218; 157 703-705 * * Vladimir Karapetoff (1936)"Restricted relativity in terms of hyperbolic functions of rapidities",
American Mathematical Monthly ''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an ...
43:70. * Frank Morley (1936) "When and Where", ''The Criterion'', edited by T.S. Eliot, 15:200-2009. * Wolfgang Rindler (2001) ''Relativity: Special, General, and Cosmological'', page 53,
Oxford University Press Oxford University Press (OUP) is the university press of the University of Oxford. It is the largest university press in the world, and its printing history dates back to the 1480s. Having been officially granted the legal right to print book ...
. * Shaw, Ronald (1982) ''Linear Algebra and Group Representations'', v. 1, page 229,
Academic Press Academic Press (AP) is an academic book publisher founded in 1941. It was acquired by Harcourt, Brace & World in 1969. Reed Elsevier bought Harcourt in 2000, and Academic Press is now an imprint of Elsevier. Academic Press publishes refer ...
. * (see page 17 of e-link) * * {{Relativity Special relativity