Expander Mixing Lemma
   HOME





Expander Mixing Lemma
The expander mixing lemma intuitively states that the edges of certain d-regular graphs are evenly distributed throughout the graph. In particular, the number of edges between two vertex subsets S and T is always close to the expected number of edges between them in a random d-regular graph, namely \frac dn, S, , T, . ''d''-Regular Expander Graphs Define an (n, d, \lambda)-graph to be a d-regular graph G on n vertices such that all of the eigenvalues of its adjacency matrix A_G except one have absolute value at most \lambda. The d-regularity of the graph guarantees that its largest absolute value of an eigenvalue is d. In fact, the all-1's vector \mathbf1 is an eigenvector of A_G with eigenvalue d, and the eigenvalues of the adjacency matrix will never exceed the maximum degree of G in absolute value. If we fix d and \lambda then (n, d, \lambda)-graphs form a family of expander graphs with a constant spectral gap. Statement Let G = (V, E) be an (n, d, \lambda)-graph. For any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expander Graph
In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes. Definitions Intuitively, an expander graph is a finite, undirected multigraph in which every subset of the vertices that is not "too large" has a "large" boundary. Different formalisations of these notions give rise to different notions of expanders: ''edge expanders'', ''vertex expanders'', and ''spectral expanders'', as defined below. A disconnected graph is not an expander, since the boundary of a connected component is empty. Every connected finite graph is an expander; however, different connected graphs have different expansion parameters. The complete graph has the best expansion property, but it has largest possible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Graph
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of ''typical'' graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, ''random graph'' refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a ''random graph''. Models A random graph is obtained by starting with a set of ''n'' isolated vertices and adding successive edges between them at random. The a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Graph
In graph theory, a regular graph is a Graph (discrete mathematics), graph where each Vertex (graph theory), vertex has the same number of neighbors; i.e. every vertex has the same Degree (graph theory), degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. A regular graph with vertices of degree is called a graph or regular graph of degree . Special cases Regular graphs of degree at most 2 are easy to classify: a graph consists of disconnected vertices, a graph consists of disconnected edges, and a graph consists of a disjoint union of graphs, disjoint union of cycle (graph theory), cycles and infinite chains. A graph is known as a cubic graph. A strongly regular graph is a regular graph where every adjacent pair of vertices has the same number of neighbors in common, and every non-adjacent pair of vertices has the same number of neighbors in common. The smal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjacency Matrix
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph (discrete mathematics), graph. The elements of the matrix (mathematics), matrix indicate whether pairs of Vertex (graph theory), vertices are Neighbourhood (graph theory), adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is Glossary of graph theory terms#undirected, undirected (i.e. all of its Glossary of graph theory terms#edge, edges are bidirectional), the adjacency matrix is symmetric matrix, symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory. The adjacency matrix of a graph should be distinguished from its incidence matrix, a different matrix representation whose elements indicate whether vertex–edge pairs are Incidence (graph), incident or not, and its degree matrix, whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Expander Graph
In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes. Definitions Intuitively, an expander graph is a finite, undirected multigraph in which every subset of the vertices that is not "too large" has a "large" boundary. Different formalisations of these notions give rise to different notions of expanders: ''edge expanders'', ''vertex expanders'', and ''spectral expanders'', as defined below. A disconnected graph is not an expander, since the boundary of a connected component is empty. Every connected finite graph is an expander; however, different connected graphs have different expansion parameters. The complete graph has the best expansion property, but it has largest possible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectral Gap
In mathematics, the spectral gap is the difference between the moduli of the two largest eigenvalues of a matrix or operator; alternately, it is sometimes taken as the smallest non-zero eigenvalue. Various theorems relate this difference to other properties of the system. The spectral gap gets its name from the ''matrix spectrum'', that is, for a matrix, the list of its eigenvalues. It provides insight on diffusion within the graph: corresponding the spectral gap to the smallest non-zero eigenvalue, it is then the mode of the network state that shows the slowest exponential decay over time. See also * Cheeger constant (graph theory) * Cheeger constant (Riemannian geometry) * Eigengap * Spectral gap (physics) * Spectral radius ''Spectral'' is a 2016 Hungarian-American military science fiction action film co-written and directed by Nic Mathieu. Written with Ian Fried (screenwriter), Ian Fried & George Nolfi, the film stars James Badge Dale as DARPA research scientist Ma . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Biregular Graph
In graph-theoretic mathematics, a biregular graph or semiregular bipartite graph is a bipartite graph G=(U,V,E) for which every two vertices on the same side of the given bipartition have the same degree as each other. If the degree of the vertices in U is x and the degree of the vertices in V is y, then the graph is said to be (x,y)-biregular. Example Every complete bipartite graph K_ is (b,a)-biregular. The rhombic dodecahedron In geometry, the rhombic dodecahedron is a Polyhedron#Convex_polyhedra, convex polyhedron with 12 congruence (geometry), congruent rhombus, rhombic face (geometry), faces. It has 24 edge (geometry), edges, and 14 vertex (geometry), vertices of 2 ... is another example; it is (3,4)-biregular. Vertex counts An (x,y)-biregular graph G=(U,V,E) must satisfy the equation x, U, =y, V, . This follows from a simple double counting argument: the number of endpoints of edges in U is x, U, , the number of endpoints of edges in V is y, V, , and each edge contr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bipartite Graph
In the mathematics, mathematical field of graph theory, a bipartite graph (or bigraph) is a Graph (discrete mathematics), graph whose vertex (graph theory), vertices can be divided into two disjoint sets, disjoint and Independent set (graph theory), independent sets U and V, that is, every edge (graph theory), edge connects a Vertex (graph theory), vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycle (graph theory), cycles. The two sets U and V may be thought of as a graph coloring, coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a Gallery of named graphs, triangle: after one node is colored blue and another red, the third vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjacency Matrix
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph (discrete mathematics), graph. The elements of the matrix (mathematics), matrix indicate whether pairs of Vertex (graph theory), vertices are Neighbourhood (graph theory), adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is Glossary of graph theory terms#undirected, undirected (i.e. all of its Glossary of graph theory terms#edge, edges are bidirectional), the adjacency matrix is symmetric matrix, symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory. The adjacency matrix of a graph should be distinguished from its incidence matrix, a different matrix representation whose elements indicate whether vertex–edge pairs are Incidence (graph), incident or not, and its degree matrix, whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cauchy–Schwarz Inequality
The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) is an upper bound on the absolute value of the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely used inequalities in mathematics. Inner products of vectors can describe finite sums (via finite-dimensional vector spaces), infinite series (via vectors in sequence spaces), and integrals (via vectors in Hilbert spaces). The inequality for sums was published by . The corresponding inequality for integrals was published by and . Schwarz gave the modern proof of the integral version. Statement of the inequality The Cauchy–Schwarz inequality states that for all vectors \mathbf and \mathbf of an inner product space where \langle \cdot, \cdot \rangle is the inner product. Examples of inner products include the real and complex dot product; see the examples in inner product. Every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Coloring
In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a Graph (discrete mathematics), graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling. In its simplest form, it is a way of coloring the Vertex (graph theory), vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an ''edge coloring'' assigns a color to each Edge (graph theory), edges so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each Face (graph theory), face (or region) so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane (geometry), plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in Perspective (graphical)#Renaissance, perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]