Excluded Point Topology
   HOME
*





Excluded Point Topology
In mathematics, the excluded point topology is a topology where exclusion of a particular point defines openness. Formally, let ''X'' be any non-empty set and ''p'' ∈ ''X''. The collection :T = \ \cup \ of subsets of ''X'' is then the excluded point topology on ''X''. There are a variety of cases which are individually named: * If ''X'' has two points, it is called the Sierpiński space. This case is somewhat special and is handled separately. * If ''X'' is finite (with at least 3 points), the topology on ''X'' is called the finite excluded point topology * If ''X'' is countably infinite, the topology on ''X'' is called the countable excluded point topology * If ''X'' is uncountable, the topology on ''X'' is called the uncountable excluded point topology A generalization is the open extension topology; if X\setminus \ has the discrete topology, then the open extension topology on (X \setminus \) \cup \ is the excluded point topology. This topology is used to provide inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Base
In topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter \mathcal(x) for a point x in a topological space is the collection of all neighbourhoods of x. Definitions Neighbourhood of a point or set An of a point (or subset) x in a topological space X is any open subset U of X that contains x. A is any subset N \subseteq X that contains open neighbourhood of x; explicitly, N is a neighbourhood of x in X if and only if there exists some open subset U with x \in U \subseteq N. Equivalently, a neighborhood of x is any set that contains x in its topological interior. Importantly, a "neighbourhood" does have to be an open set; those neighbourhoods that also happen to be open sets are known as "open neighbourhoods." Similarly, a neighbourhood that is also a closed (respectively, compact, connected, etc.) set is called a (respectively, , , etc.). There are many other types of neighbourhoods that are used i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Counterexamples In Topology
''Counterexamples in Topology'' (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr. In the process of working on problems like the metrization problem, topologists (including Steen and Seebach) have defined a wide variety of topological properties. It is often useful in the study and understanding of abstracts such as topological spaces to determine that one property does not follow from another. One of the easiest ways of doing this is to find a counterexample which exhibits one property but not the other. In ''Counterexamples in Topology'', Steen and Seebach, together with five students in an undergraduate research project at St. Olaf College, Minnesota in the summer of 1967, canvassed the field of topology for such counterexamples and compiled them in an attempt to simplify the literature. For instance, an example of a first-countable space which is not second-countable is counterexample #3, the discrete topology on an uncoun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Particular Point Topology
In mathematics, the particular point topology (or included point topology) is a topology where a set is open if it contains a particular point of the topological space. Formally, let ''X'' be any non-empty set and ''p'' ∈ ''X''. The collection :T = \ of subsets of ''X'' is the particular point topology on ''X''. There are a variety of cases that are individually named: * If ''X'' has two points, the particular point topology on ''X'' is the Sierpiński space. * If ''X'' is finite (with at least 3 points), the topology on ''X'' is called the finite particular point topology. * If ''X'' is countably infinite, the topology on ''X'' is called the countable particular point topology. * If ''X'' is uncountable, the topology on ''X'' is called the uncountable particular point topology. A generalization of the particular point topology is the closed extension topology. In the case when ''X'' \ has the discrete topology, the closed extension topology is the same as the particular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Topologies
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property. Widely known topologies * The Baire space − \N^ with the product topology, where \N denotes the natural numbers endowed with the discrete topology. It is the space of all sequences of natural numbers. * Cantor set − A subset of the closed interval , 1/math> with remarkable properties. ** Cantor dust * Discrete topology − All subsets are open. * Euclidean topology − The natural topology on Euclidean space \Reals^n induced by the Euclidean metric, which is itself induced by the Euclidean norm. ** Real line − \Reals ** Space-filling curve ** Unit interval − , 1/math> * Extended real number line * Hilbert cube − , 1/1\times , 1/2\times , 1/3\times \cdots with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fort Space
In mathematics, there are a few topological spaces named after M. K. Fort, Jr. Fort space Fort space is defined by taking an infinite set ''X'', with a particular point ''p'' in ''X'', and declaring open the subsets ''A'' of ''X'' such that: * ''A'' does not contain ''p'', or * ''A'' contains all but a finite number of points of ''X''. Note that the subspace X\setminus\ has the discrete topology and is open and dense in ''X''. ''X'' is homeomorphic to the one-point compactification of an infinite discrete space. Modified Fort space Modified Fort space is similar but has two particular points. So take an infinite set ''X'' with two distinct points ''p'' and ''q'', and declare open the subsets ''A'' of ''X'' such that: * ''A'' contains neither ''p'' nor ''q'', or * ''A'' contains all but a finite number of points of ''X''. The space ''X'' is compact and T1, but not Hausdorff. Fortissimo space Fortissimo space is defined by taking an uncountable set ''X'', with a particular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Topological Space
In mathematics, a finite topological space is a topological space for which the underlying point set is finite. That is, it is a topological space which has only finitely many elements. Finite topological spaces are often used to provide examples of interesting phenomena or counterexamples to plausible sounding conjectures. William Thurston has called the study of finite topologies in this sense "an oddball topic that can lend good insight to a variety of questions". Topologies on a finite set Let X be a finite set. A topology on X is a subset \tau of P(X) (the power set of X ) such that # \varnothing \in \tau and X\in \tau . # if U, V \in \tau then U \cup V \in \tau . # if U, V \in \tau then U \cap V \in \tau . In other words, a subset \tau of P(X) is a topology if \tau contains both \varnothing and X and is closed under finite intersections and arbitrary unions. Elements of \tau are called open sets. Since the power set of a finite s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Path-connected
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topological s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected (topology)
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ultraconnected
In mathematics, a topological space is said to be ultraconnected if no two nonempty closed sets are disjoint.PlanetMath Equivalently, a space is ultraconnected if and only if the closures of two distinct points always have non trivial intersection. Hence, no T1 space with more than one point is ultraconnected.Steen & Seebach, Sect. 4, pp. 29-30 Properties Every ultraconnected space X is path-connected (but not necessarily arc connected). If a and b are two points of X and p is a point in the intersection \operatorname\\cap\operatorname\, the function f: ,1to X defined by f(t)=a if 0 \le t < 1/2, f(1/2)=p and f(t)=b if 1/2 < t \le 1, is a continuous path between a and b. Every ultraconnected space is ,

Locally Compact
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively compact neighbourhoo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]