In
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
and related areas of
mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter
for a point
in a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
is the collection of all
neighbourhood
A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; American and British English spelling differences, see spelling differences) is a geographically localised community ...
s of
Definitions
Neighbourhood of a point or set
An of a point (or
subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
)
in a topological space
is any
open subset
In mathematics, open sets are a generalization of open intervals in the real line.
In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are s ...
of
that contains
A is any subset
that contains open neighbourhood of
;
explicitly,
is a neighbourhood of
in
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bi ...
there exists some open subset
with
.
Equivalently, a neighborhood of
is any set that contains
in its
topological interior.
Importantly, a "neighbourhood" does have to be an open set; those neighbourhoods that also happen to be open sets are known as "open neighbourhoods."
Similarly, a neighbourhood that is also a
closed (respectively,
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact
* Blood compact, an ancient ritual of the Philippines
* Compact government, a type of colonial rule utilized in British ...
,
connected, etc.) set is called a (respectively, , , etc.).
There are many other types of neighbourhoods that are used in topology and related fields like
functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined ...
.
The family of all neighbourhoods having a certain "useful" property often forms a
neighbourhood basis, although many times, these neighbourhoods are not necessarily open.
Locally compact space In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
s, for example, are those spaces that, at every point, have a neighbourhood basis consisting entirely of compact sets.
Neighbourhood filter
The neighbourhood system for a point (or
non-empty subset)
is a
filter called the The neighbourhood filter for a point
is the same as the neighbourhood filter of the
singleton set
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0.
Properties
Within the framework of Zermelo–Fraenkel set theory, t ...
Neighbourhood basis
A or (or or ) for a point
is a
filter base of the neighbourhood filter; this means that it is a subset
such that for all
there exists some
such that
That is, for any neighbourhood
we can find a neighbourhood
in the neighbourhood basis that is contained in
Equivalently,
is a local basis at
if and only if the neighbourhood filter
can be recovered from
in the sense that the following equality holds:
[ (See Chapter 2, Section 4)]
A family
is a neighbourhood basis for
if and only if
is a
cofinal subset of
with respect to the
partial order
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
(importantly, this partial order is the
superset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
relation and not the
subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
relation).
Neighbourhood subbasis
A at
is a family
of subsets of
each of which contains
such that the collection of all possible finite
intersections
In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of elements of
forms a neighbourhood basis at
Examples
If
has its usual
Euclidean topology
In mathematics, and especially general topology, the Euclidean topology is the natural topology induced on n-dimensional Euclidean space \R^n by the Euclidean metric.
Definition
The Euclidean norm on \R^n is the non-negative function \, \cdo ...
then the neighborhoods of
are all those subsets
for which there exists some
real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
such that
For example, all of the following sets are neighborhoods of
in
:
but none of the following sets are neighborhoods of
:
where
denotes the rational numbers.
If
is an open subset of a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
then for every
is a neighborhood of
in
More generally, if
is any set and
denotes the
topological interior of
in
then
is a neighborhood (in
) of every point
and moreover,
is a neighborhood of any other point.
Said differently,
is a neighborhood of a point
if and only if
Neighbourhood bases
In any topological space, the neighbourhood system for a point is also a neighbourhood basis for the point. The set of all open neighbourhoods at a point forms a neighbourhood basis at that point.
For any point
in a
metric space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general sett ...
, the sequence of
open ball
In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them).
These concepts are def ...
s around
with radius
form a
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural number ...
neighbourhood basis
. This means every metric space is
first-countable
In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space X is said to be first-countable if each point has a countable neighbourhood basis (local bas ...
.
Given a space
with the
indiscrete topology In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the conseque ...
the neighbourhood system for any point
only contains the whole space,
.
In the
weak topology
In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a ...
on the space of measures on a space
a neighbourhood base about
is given by
where
are
continuous bounded functions from
to the real numbers and
are positive real numbers.
Seminormed spaces and topological groups
In a
seminormed space, that is a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
with the
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
induced by a
seminorm, all neighbourhood systems can be constructed by
translation
Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
of the neighbourhood system for the origin,
This is because, by assumption, vector addition is separately continuous in the induced topology. Therefore, the topology is determined by its neighbourhood system at the origin. More generally, this remains true whenever the space is a
topological group
In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two ...
or the topology is defined by a
pseudometric.
Properties
Suppose
and let
be a neighbourhood basis for
in
Make
into a
directed set
In mathematics, a directed set (or a directed preorder or a filtered set) is a nonempty Set (mathematics), set A together with a Reflexive relation, reflexive and Transitive relation, transitive binary relation \,\leq\, (that is, a preorder), with ...
by
partially ordering it by superset inclusion
Then
is a neighborhood of
in
if and only if there exists an
-indexed
net in
such that
for every
(which implies that
in
).
See also
*
*
*
*
*
*
*
References
Bibliography
*
*
*
{{DEFAULTSORT:Neighbourhood System
General topology