Distributivity (order Theory)
   HOME
*



picture info

Distributivity (order Theory)
In the mathematical area of order theory, there are various notions of the common concept of distributivity, applied to the formation of suprema and infima. Most of these apply to partially ordered sets that are at least lattices, but the concept can in fact reasonably be generalized to semilattices as well. Distributive lattices Probably the most common type of distributivity is the one defined for lattices, where the formation of binary suprema and infima provide the total operations of join (\vee) and meet (\wedge). Distributivity of these two operations is then expressed by requiring that the identity : x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) hold for all elements ''x'', ''y'', and ''z''. This distributivity law defines the class of distributive lattices. Note that this requirement can be rephrased by saying that binary meets preserve binary joins. The above statement is known to be equivalent to its order dual : x \vee (y \wedge z) = (x \vee y) \wedge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heyting Algebra
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' of ''implication'' such that (''c'' ∧ ''a'') ≤ ''b'' is equivalent to ''c'' ≤ (''a'' → ''b''). From a logical standpoint, ''A'' → ''B'' is by this definition the weakest proposition for which modus ponens, the inference rule ''A'' → ''B'', ''A'' ⊢ ''B'', is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by to formalize intuitionistic logic. As lattices, Heyting algebras are distributive. Every Boolean algebra is a Heyting algebra when ''a'' → ''b'' is defined as ¬''a'' ∨ ''b'', as is every complete distributive lattice satisfying a one-sided infinite distributive law when ''a'' → ''b'' is taken to be the supremum of the set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Theory
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor. Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These ''lattice-like'' structures all admit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Completely Distributive Lattice
In the mathematical area of order theory, a completely distributive lattice is a complete lattice in which arbitrary joins distribute over arbitrary meets. Formally, a complete lattice ''L'' is said to be completely distributive if, for any doubly indexed family of ''L'', we have : \bigwedge_\bigvee_ x_ = \bigvee_\bigwedge_ x_ where ''F'' is the set of choice functions ''f'' choosing for each index ''j'' of ''J'' some index ''f''(''j'') in ''K''''j''.B. A. Davey and H. A. Priestley, ''Introduction to Lattices and Order'' 2nd Edition, Cambridge University Press, 2002, , 10.23 Infinite distributive laws, pp. 239–240 Complete distributivity is a self-dual property, i.e. dualizing the above statement yields the same class of complete lattices. Without the axiom of choice, no complete lattice with more than one element can ever satisfy the above property, as one can just let ''x''''j'',''k'' equal the top element of ''L'' for all indices ''j'' and ''k'' with all of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stone Duality
In mathematics, there is an ample supply of categorical dualities between certain categories of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they form a natural generalization of Stone's representation theorem for Boolean algebras. These concepts are named in honor of Marshall Stone. Stone-type dualities also provide the foundation for pointless topology and are exploited in theoretical computer science for the study of formal semantics. This article gives pointers to special cases of Stone duality and explains a very general instance thereof in detail. Overview of Stone-type dualities Probably the most general duality that is classically referred to as "Stone duality" is the duality between the category Sob of sober spaces with continuous functions and the category SFrm of spatial frames with appropriate frame homomorphisms. The dual category of SFrm is the category of spatial lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pointless Topology
In mathematics, pointless topology, also called point-free topology (or pointfree topology) and locale theory, is an approach to topology that avoids mentioning points, and in which the lattices of open sets are the primitive notions. In this approach it becomes possible to construct ''topologically interesting'' spaces from purely algebraic data. History The first approaches to topology were geometrical, where one started from Euclidean space and patched things together. But Marshall Stone's work on Stone duality in the 1930s showed that topology can be viewed from an algebraic point of view (lattice-theoretic). Apart from Stone, Henry Wallman was the first person to exploit this idea. Others continued this path till Charles Ehresmann and his student Jean Bénabou (and simultaneously others), made the next fundamental step in the late fifties. Their insights arose from the study of "topological" and "differentiable" categories. Ehresmann's approach involved using a category ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE