Dg Category
   HOME
*





Dg Category
In mathematics, especially homological algebra, a differential graded category, often shortened to dg-category or DG category, is a category whose morphism sets are endowed with the additional structure of a differential graded \Z-module. In detail, this means that \operatorname(A,B), the morphisms from any object ''A'' to another object ''B'' of the category is a direct sum :\bigoplus_\operatorname_n(A,B) and there is a differential ''d'' on this graded group, i.e., for each ''n'' there is a linear map :d\colon \operatorname_n(A,B) \rightarrow \operatorname_(A,B), which has to satisfy d \circ d = 0. This is equivalent to saying that \operatorname(A,B) is a cochain complex. Furthermore, the composition of morphisms \operatorname(A,B) \otimes \operatorname(B,C) \rightarrow \operatorname(A,C) is required to be a map of complexes, and for all objects ''A'' of the category, one requires d(\operatorname_A) = 0. Examples * Any additive category may be considered to be a DG-category ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Category
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction proceeds on the basis that the objects of ''D''(''A'') should be chain complexes in ''A'', with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. The development of the derived category, by Alexander Grothendieck and his student Jean-Louis Verdier shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had made r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annales Scientifiques De L'École Normale Supérieure
''Annales Scientifiques de l'École Normale Supérieure'' is a French scientific journal of mathematics published by the Société Mathématique de France. It was established in 1864 by the French chemist Louis Pasteur and published articles in mathematics, physics, chemistry, biology, and geology. In 1900, it became a purely mathematical journal. It is published with help of the Centre national de la recherche scientifique. Its web site is hosted by the mathematics department of the École Normale Supérieure École may refer to: * an elementary school in the French educational stages normally followed by secondary education establishments (collège and lycée) * École (river), a tributary of the Seine flowing in région Île-de-France * École, S .... External links * Archive(1864–2013) Mathematics journals Publications established in 1864 Multilingual journals Multidisciplinary scientific journals Société Mathématique de France academic journals {{mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derivator
In mathematics, derivators are a proposed frameworkpg 190-195 for homological algebra giving a foundation for both abelian and non-abelian homological algebra and various generalizations of it. They were introduced to address the deficiencies of derived categories (such as the non-functoriality of the cone construction) and provide at the same time a language for homotopical algebra. Derivators were first introduced by Alexander Grothendieck in his long unpublished 1983 manuscript '' Pursuing Stacks''. They were then further developed by him in the huge unpublished 1991 manuscript ''Les Dérivateurs'' of almost 2000 pages. Essentially the same concept was introduced (apparently independently) by Alex Heller. The manuscript has been edited for on-line publication by Georges Maltsiniotis. The theory has been further developed by several other people, including Heller, Franke, Keller and Groth. Motivations One of the motivating reasons for considering derivators is the lack of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graded Category
If \mathcal is a category, then a \mathcal-graded category is a category \mathcal together with a functor F\colon\mathcal \rightarrow \mathcal. Monoids and groups can be thought of as categories with a single object. A monoid-graded or group-graded category is therefore one in which to each morphism is attached an element of a given monoid (resp. group), its grade. This must be compatible with composition, in the sense that compositions have the product grade. Definition There are various different definitions of a graded category, up to the most abstract one given above. A more concrete definition of a graded abelian category is as follows: Let \mathcal be an abelian category and \mathbb a monoid. Let \mathcal=\ be a set of functors from \mathcal to itself. If * S_ is the identity functor on \mathcal, * S_S_=S_ for all g,h \in \mathbb and * S_ is a full and faithful functor for every g\in \mathbb we say that (\mathcal,\mathcal) is a \mathbb-graded category. See also * D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graded (mathematics)
In mathematics, the term “graded” has a number of meanings, mostly related: In abstract algebra, it refers to a family of concepts: * An algebraic structure X is said to be I-graded for an index set I if it has a gradation or grading, i.e. a decomposition into a direct sum X = \bigoplus_ X_i of structures; the elements of X_i are said to be "homogeneous of degree ''i'' ". ** The index set I is most commonly \N or \Z, and may be required to have extra structure depending on the type of X. ** Grading by \Z_2 (i.e. \Z/2\Z) is also important; see e.g. signed set (the \Z_2-graded sets). ** The trivial (\Z- or \N-) gradation has X_0 = X, X_i = 0 for i \neq 0 and a suitable trivial structure 0. ** An algebraic structure is said to be doubly graded if the index set is a direct product of sets; the pairs may be called "bidegrees" (e.g. see Spectral sequence). * A I-graded vector space or graded linear space is thus a vector space with a decomposition into a direct sum V = \b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Algebra
In mathematics, differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with finitely many derivations, which are unary functions that are linear and satisfy the Leibniz product rule. A natural example of a differential field is the field of rational functions in one variable over the complex numbers, \mathbb(t), where the derivation is differentiation with respect to t. Differential algebra refers also to the area of mathematics consisting in the study of these algebraic objects and their use in the algebraic study of differential equations. Differential algebra was introduced by Joseph Ritt in 1950. Open problems The biggest open problems in the field include the Kolchin Catenary Conjecture, the Ritt Problem, and The Jacobi Bound Problem. All of these deal with the structure of differential ideals in differential rings. Differential ring A ''differential ring'' is a ring R equipped with one or more '' derivations' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grothendieck Abelian Category
In mathematics, a Grothendieck category is a certain kind of abelian category, introduced in Alexander Grothendieck's Tôhoku paper of 1957English translation in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's seminal thesis in 1962. To every algebraic variety V one can associate a Grothendieck category \operatorname(V), consisting of the quasi-coherent sheaves on V. This category encodes all the relevant geometric information about V, and V can be recovered from \operatorname(V) (the Gabriel–Rosenberg reconstruction theorem). This example gives rise to one approach to noncommutative algebraic geometry: the study of "non-commutative varieties" is then nothing but the study of (certain) Grothendieck categories. Definition By definition, a Grothendieck category \mathcal is an AB5 category with a generator. Spelled out, this means that * \mathcal is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stable Homotopy Category
A stable is a building in which livestock, especially horses, are kept. It most commonly means a building that is divided into separate stalls for individual animals and livestock. There are many different types of stables in use today; the American-style barn, for instance, is a large barn with a door at each end and individual stalls inside or free-standing stables with top and bottom-opening doors. The term "stable" is also used to describe a group of animals kept by one owner, regardless of housing or location. The exterior design of a stable can vary widely, based on climate, building materials, historical period and cultural styles of architecture. A wide range of building materials can be used, including masonry (bricks or stone), wood and steel. Stables also range widely in size, from a small building housing one or two animals to facilities at agricultural shows or race tracks that can house hundreds of animals. History The stable is typically historically the se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Triangulated Category
In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology. Much of homological algebra is clarified and extended by the language of triangulated categories, an important example being the theory of sheaf cohomology. In the 1960s, a typical use of triangulated categories was to extend properties of sheaves on a space ''X'' to complexes of sheaves, viewed as objects of the derived category of sheaves on ''X''. More recently, triangulated categories have become objects of interest in their own right. Many equivalences between triangulated categories of different origins have been proved or conjectured. For example, the homological mirror symmetry c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proper Morphism
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field ''k'' a complete variety. For example, every projective variety over a field ''k'' is proper over ''k''. A scheme ''X'' of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space ''X''(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite. Definition A morphism ''f'': ''X'' → ''Y'' of schemes is called universally closed if for every scheme ''Z'' with a morphism ''Z'' → ''Y'', the projection from the fiber product :X \times_Y Z \to Z is a closed map of the underlying topological spaces. A morphism of schemes is called proper if it is separated, of finite type, and universally closed ( GAII, 5.4.. One also says that ''X'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smooth Morphism
In algebraic geometry, a morphism f:X \to S between schemes is said to be smooth if *(i) it is locally of finite presentation *(ii) it is flat, and *(iii) for every geometric point \overline \to S the fiber X_ = X \times_S is regular. (iii) means that each geometric fiber of ''f'' is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If ''S'' is the spectrum of an algebraically closed field and ''f'' is of finite type, then one recovers the definition of a nonsingular variety. Equivalent definitions There are many equivalent definitions of a smooth morphism. Let f: X \to S be locally of finite presentation. Then the following are equivalent. # ''f'' is smooth. # ''f'' is formally smooth (see below). # ''f'' is flat and the sheaf of relative differentials \Omega_ is locally free of rank equal to the relative dimension of X/S. # For any x \in X, there exists a neighborhood \operatornameB of x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]