Cover (mathematics)
   HOME
*





Cover (mathematics)
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\subset X, then C is a cover of X if \bigcup_U_ = X. Thus the collection \lbrace U_\alpha : \alpha \in A \rbrace is a cover of X if each element of X belongs to at least one of the subsets U_. Cover in topology Covers are commonly used in the context of topology. If the set X is a topological space, then a ''cover'' C of X is a collection of subsets \_ of X whose union is the whole space X. In this case we say that C ''covers'' X, or that the sets U_\alpha ''cover'' X. Also, if Y is a (topological) subspace of X, then a ''cover'' of Y is a collection of subsets C=\_ of X whose union contains Y, i.e., C is a cover of Y if :Y \subseteq \bigcup_U_. That is, we may cover Y with either open sets in Y itself, or cover Y by open sets in the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trivial Topology
In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the consequence that all points of the space are "lumped together" and cannot be distinguished by topological means. Every indiscrete space is a pseudometric space in which the distance between any two points is zero. Details The trivial topology is the topology with the least possible number of open sets, namely the empty set and the entire space, since the definition of a topology requires these two sets to be open. Despite its simplicity, a space ''X'' with more than one element and the trivial topology lacks a key desirable property: it is not a T0 space. Other properties of an indiscrete space ''X''—many of which are quite unusual—include: * The only closed sets are the empty set and ''X''. * The only possible basis of ''X'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John L
John Lasarus Williams (29 October 1924 – 15 June 2004), known as John L, was a Welsh nationalist activist. Williams was born in Llangoed on Anglesey, but lived most of his life in nearby Llanfairpwllgwyngyll. In his youth, he was a keen footballer, and he also worked as a teacher. His activism started when he campaigned against the refusal of Brewer Spinks, an employer in Blaenau Ffestiniog, to permit his staff to speak Welsh. This inspired him to become a founder of Undeb y Gymraeg Fyw, and through this organisation was the main organiser of ''Sioe Gymraeg y Borth'' (the Welsh show for Menai Bridge using the colloquial form of its Welsh name).Colli John L Williams
, '''', 15 June ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prentice Hall
Prentice Hall was an American major educational publisher owned by Savvas Learning Company. Prentice Hall publishes print and digital content for the 6–12 and higher-education market, and distributes its technical titles through the Safari Books Online e-reference service. History On October 13, 1913, law professor Charles Gerstenberg and his student Richard Ettinger founded Prentice Hall. Gerstenberg and Ettinger took their mothers' maiden names, Prentice and Hall, to name their new company. Prentice Hall became known as a publisher of trade books by authors such as Norman Vincent Peale; elementary, secondary, and college textbooks; loose-leaf information services; and professional books. Prentice Hall acquired the training provider Deltak in 1979. Prentice Hall was acquired by Gulf+Western in 1984, and became part of that company's publishing division Simon & Schuster. S&S sold several Prentice Hall subsidiaries: Deltak and Resource Systems were sold to National Education ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Covering Dimension
In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way. Informal discussion For ordinary Euclidean spaces, the Lebesgue covering dimension is just the ordinary Euclidean dimension: zero for points, one for lines, two for planes, and so on. However, not all topological spaces have this kind of "obvious" dimension, and so a precise definition is needed in such cases. The definition proceeds by examining what happens when the space is covered by open sets. In general, a topological space ''X'' can be covered by open sets, in that one can find a collection of open sets such that ''X'' lies inside of their union. The covering dimension is the smallest number ''n'' such that for every cover, there is a refinement in which every point in ''X'' lies in the intersection of no more than ''n'' + 1 covering sets. This is the gist of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Paracompact Space
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. Howeve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metacompact Space
In the mathematical field of general topology, a topological space is said to be metacompact if every open cover has a point-finite open refinement. That is, given any open cover of the topological space, there is a refinement that is again an open cover with the property that every point is contained only in finitely many sets of the refining cover. A space is countably metacompact if every countable open cover has a point-finite open refinement. Properties The following can be said about metacompactness in relation to other properties of topological spaces: * Every paracompact space is metacompact. This implies that every compact space is metacompact, and every metric space is metacompact. The converse does not hold: a counter-example is the Dieudonné plank. * Every metacompact space is orthocompact. * Every metacompact normal space is a shrinking space * The product of a compact space and a metacompact space is metacompact. This follows from the tube lemma. * An easy exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite comm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lindelöf Space
In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of '' compactness'', which requires the existence of a ''finite'' subcover. A hereditarily Lindelöf space is a topological space such that every subspace of it is Lindelöf. Such a space is sometimes called strongly Lindelöf, but confusingly that terminology is sometimes used with an altogether different meaning. The term ''hereditarily Lindelöf'' is more common and unambiguous. Lindelöf spaces are named after the Finnish mathematician Ernst Leonard Lindelöf. Properties of Lindelöf spaces * Every compact space, and more generally every σ-compact space, is Lindelöf. In particular, every countable space is Lindelöf. * A Lindelöf space is compact if and only if it is countably compact. * Every second-countable space is Lindelöf, but not conversely. For example, there are many compact spaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Star Refinement
In mathematics, specifically in the study of topology and open covers of a topological space ''X'', a star refinement is a particular kind of refinement of an open cover of ''X''. The general definition makes sense for arbitrary coverings and does not require a topology. Let X be a set and let \mathcal U be a covering of X, i.e., X = \bigcup \mathcal U. Given a subset S of X then the ''star'' of S with respect to \mathcal U is the union of all the sets U\in \mathcal U that intersect S, i.e.: : \operatorname(S, \mathcal U) = \bigcup\big\. Given a point x\in X, we write \operatorname(x,\mathcal U) instead of \operatorname(\, \mathcal U). Note that \operatorname(S, \mathcal U) \ne \bigcup_ (O \cap S). The covering \mathcal U of X is said to be a ''refinement'' of a covering \mathcal V of X if every U\in \mathcal U is contained in some V\in \mathcal V. The covering \mathcal U is said to be a ''barycentric refinement'' of \mathcal V if for every x\in X the star \operatorname(x,\mathca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, * a 0-dimensional simplex is a point, * a 1-dimensional simplex is a line segment, * a 2-dimensional simplex is a triangle, * a 3-dimensional simplex is a tetrahedron, and * a 4-dimensional simplex is a 5-cell. Specifically, a ''k''-simplex is a ''k''-dimensional polytope which is the convex hull of its ''k'' + 1 vertices. More formally, suppose the ''k'' + 1 points u_0, \dots, u_k \in \mathbb^ are affinely independent, which means u_1 - u_0,\dots, u_k-u_0 are linearly independent. Then, the simplex determined by them is the set of points : C = \left\ This representation in terms of weighted vertices is known as the barycentric coordinate system. A regular simplex is a simplex that is also a regular polytope. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]