Lindelöf Space
In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of '' compactness'', which requires the existence of a ''finite'' subcover. A hereditarily Lindelöf space is a topological space such that every subspace of it is Lindelöf. Such a space is sometimes called strongly Lindelöf, but confusingly that terminology is sometimes used with an altogether different meaning. The term ''hereditarily Lindelöf'' is more common and unambiguous. Lindelöf spaces are named after the Finnish mathematician Ernst Leonard Lindelöf. Properties of Lindelöf spaces * Every compact space, and more generally every σ-compact space, is Lindelöf. In particular, every countable space is Lindelöf. * A Lindelöf space is compact if and only if it is countably compact. * Every second-countable space is Lindelöf, but not conversely. For example, there are many compact spaces ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases: 2011. American Mathematical Society. * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Open Covering
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\subset X, then C is a cover of X if \bigcup_U_ = X. Thus the collection \lbrace U_\alpha : \alpha \in A \rbrace is a cover of X if each element of X belongs to at least one of the subsets U_. Cover in topology Covers are commonly used in the context of topology. If the set X is a topological space, then a ''cover'' C of X is a collection of subsets \_ of X whose union is the whole space X. In this case we say that C ''covers'' X, or that the sets U_\alpha ''cover'' X. Also, if Y is a (topological) subspace of X, then a ''cover'' of Y is a collection of subsets C=\_ of X whose union contains Y, i.e., C is a cover of Y if :Y \subseteq \bigcup_U_. That is, we may cover Y with either open sets in Y itself, or cover Y by open sets in the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Open Set
In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, one defines open sets as the members of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or no set can be open except the space itself and the empty set (the indiscrete topology). In practice, however, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Half-open Interval Topology
In mathematics, the lower limit topology or right half-open interval topology is a topology defined on the set \mathbb of real numbers; it is different from the standard topology on \mathbb (generated by the open intervals) and has a number of interesting properties. It is the topology generated by the basis of all half-open intervals ''a'',''b''),_where_''a''_and_''b''_are_real_numbers. The_resulting_topological_space.html" ;"title="/nowiki>''a'',''b''), where ''a'' and ''b'' are real numbers. The resulting topological space">/nowiki>''a'',''b''), where ''a'' and ''b'' are real numbers. The resulting topological space is called the Sorgenfrey line after Robert Sorgenfrey or the arrow and is sometimes written \mathbb_l. Like the Cantor set and the long line (topology), long line, the Sorgenfrey line often serves as a useful counterexample to many otherwise plausible-sounding conjectures in general topology. The product of \mathbb_l with itself is also a useful counterexample, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Line
In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a point. The integers are often shown as specially-marked points evenly spaced on the line. Although the image only shows the integers from –3 to 3, the line includes all real numbers, continuing forever in each direction, and also numbers that are between the integers. It is often used as an aid in teaching simple addition and subtraction, especially involving negative numbers. In advanced mathematics, the number line can be called as a real line or real number line, formally defined as the set (mathematics), set of all real numbers, viewed as a geometry, geometric space (mathematics), space, namely the Euclidean space of dimension one. It can be thought of as a vector space (or affine space), a metric space, a topological ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Product Space
In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; in that sense the product topology is the natural topology on the Cartesian product. Definition Throughout, I will be some non-empty index set and for every index i \in I, let X_i be a topological space. Denote the Cartesian product of the sets X_i by X := \prod X_ := \prod_ X_i and for every index i \in I, denote the i-th by \begin p_i :\;&& \prod_ X_j &&\;\to\; & X_i \\ .3ex && \left(x_j\r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radon Measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures. Motivation A common problem is to find a good notion of a measure on a topological space that is compatible with the topology in some sense. One way to do this is to define a measure on the Borel sets of the topological space. In general there are several problems with this: for example, such a measure may not have a well defined support. Another approach to measure theory is to restrict to locally compact Hausdorff spaces, and only consider the measures that correspond to positive linear functionals on the space of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Suslin Space
In the mathematical discipline of general topology, a Polish space is a separable space, separable Completely metrizable space, completely metrizable topological space; that is, a space homeomorphic to a Complete space, complete metric space that has a countable Dense set, dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Alfred Tarski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory. Common examples of Polish spaces are the real line, any Separable space, separable Banach space, the Cantor space, and the Baire space (set theory), Baire space. Additionally, some spaces that are not complete metric spaces in the usual metric may be Polish; ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Perfectly Normal Space
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. Definitions A topological space ''X'' is a normal space if, given any disjoint closed sets ''E'' and ''F'', there are neighbourhoods ''U'' of ''E'' and ''V'' of ''F'' that are also disjoint. More intuitively, this condition says that ''E'' and ''F'' can be separated by neighbourhoods. A T4 space is a T1 space ''X'' that is normal; this is equivalent to ''X'' being normal and Hausdorff. A completely normal space, or , is a topological space ''X'' such that every subspace of ''X'' with subspace topology is a normal space. It turns out that ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Finite Collection
In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension. A collection of subsets of a topological space X is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection. Note that the term locally finite has different meanings in other mathematical fields. Examples and properties A finite collection of subsets of a topological space is locally finite. Infinite collections can also be locally finite: for example, the collection of all subsets of \mathbb of the form (n, n+2) for an integer n. A countable collection of subsets need not be locally finite, as shown by the collection of all subsets of \mathbb of the form (-n, n) for a natural number ''n''. If a collection of sets is locally finite, the collection of all closures of these sets is also locally finite. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sorgenfrey Plane
In topology, the Sorgenfrey plane is a frequently-cited counterexample to many otherwise plausible-sounding conjectures. It consists of the product of two copies of the Sorgenfrey line, which is the real line \mathbb under the half-open interval topology. The Sorgenfrey line and plane are named for the American mathematician Robert Sorgenfrey. A basis for the Sorgenfrey plane, denoted \mathbb from now on, is therefore the set of rectangles that include the west edge, southwest corner, and south edge, and omit the southeast corner, east edge, northeast corner, north edge, and northwest corner. Open sets in \mathbb are unions of such rectangles. \mathbb is an example of a space that is a product of Lindelöf spaces that is not itself a Lindelöf space. The so-called anti-diagonal \Delta = \ is an uncountable discrete subset of this space, and this is a non- separable subset of the separable space \mathbb. It shows that separability does not inherit to closed subspaces. Note ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |