Cyclically Ordered Group
In mathematics, a cyclically ordered group is a set with both a group structure and a cyclic order, such that left and right multiplication both preserve the cyclic order. Cyclically ordered groups were first studied in depth by Ladislav Rieger in 1947. They are a generalization of cyclic groups: the infinite cyclic group and the finite cyclic groups . Since a linear order induces a cyclic order, cyclically ordered groups are also a generalization of linearly ordered groups: the rational numbers , the real numbers , and so on. Some of the most important cyclically ordered groups fall into neither previous category: the circle group and its subgroups, such as the subgroup of rational points. Quotients of linear groups It is natural to depict cyclically ordered groups as quotients: one has and . Even a once-linear group like , when bent into a circle, can be thought of as . showed that this picture is a generic phenomenon. For any ordered group and any central element t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quotient Group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For example, the cyclic group of addition modulo ''n'' can be obtained from the group of integers under addition by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class (known as a congruence class) as a single entity. It is part of the mathematical field known as group theory. For a congruence relation on a group, the equivalence class of the identity element is always a normal subgroup of the original group, and the other equivalence classes are precisely the cosets of that normal subgroup. The resulting quotient is written G\,/\,N, where G is the original group and N is the normal subgroup. (This is pronounced G\bmod N, where \mbox is short for modulo.) Much of the importance o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canadian Mathematical Bulletin
The ''Canadian Mathematical Bulletin'' (french: Bulletin Canadien de Mathématiques) is a mathematics journal, established in 1958 and published quarterly by the Canadian Mathematical Society. The current editors-in-chief of the journal are Antonio Lei and Javad Mashreghi. The journal publishes short articles in all areas of mathematics that are of sufficient interest to the general mathematical public. Abstracting and indexing The journal is abstracted in: for the Canadian Mathematical Bulletin. * '''' * '' [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematische Nachrichten
''Mathematische Nachrichten'' (abbreviated ''Math. Nachr.''; English: ''Mathematical News'') is a mathematical journal published in 12 issues per year by Wiley-VCH GmbH. It should not be confused with the ''Internationale Mathematische Nachrichten'', an unrelated publication of the Austrian Mathematical Society. It was established in 1948 by East German mathematician Erhard Schmidt, who became its first editor-in-chief. At that time it was associated with the German Academy of Sciences at Berlin, and published by Akademie Verlag. After the fall of the Berlin Wall, Akademie Verlag was sold to VCH Verlagsgruppe Weinheim, which in turn was sold to John Wiley & Sons. According to the 2020 edition of Journal Citation Reports, the journal had an impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MV-algebra
In abstract algebra, a branch of pure mathematics, an MV-algebra is an algebraic structure with a binary operation \oplus, a unary operation \neg, and the constant 0, satisfying certain axioms. MV-algebras are the algebraic semantics of Łukasiewicz logic; the letters MV refer to the ''many-valued'' logic of Łukasiewicz. MV-algebras coincide with the class of bounded commutative BCK algebras. Definitions An MV-algebra is an algebraic structure \langle A, \oplus, \lnot, 0\rangle, consisting of * a non-empty set A, * a binary operation \oplus on A, * a unary operation \lnot on A, and * a constant 0 denoting a fixed element of A, which satisfies the following identities: * (x \oplus y) \oplus z = x \oplus (y \oplus z), * x \oplus 0 = x, * x \oplus y = y \oplus x, * \lnot \lnot x = x, * x \oplus \lnot 0 = \lnot 0, and * \lnot ( \lnot x \oplus y)\oplus y = \lnot ( \lnot y \oplus x) \oplus x. By virtue of the first three axioms, \langle A, \oplus, 0 \rangle is a commutat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equivalence Of Categories
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation. If a category is equivalent to the opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent. An equivalence of categories consists of a functor between the involved categories, which is required t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subcategory
In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, a subcategory of ''C'' is a category obtained from ''C'' by "removing" some of its objects and arrows. Formal definition Let ''C'' be a category. A subcategory ''S'' of ''C'' is given by *a subcollection of objects of ''C'', denoted ob(''S''), *a subcollection of morphisms of ''C'', denoted hom(''S''). such that *for every ''X'' in ob(''S''), the identity morphism id''X'' is in hom(''S''), *for every morphism ''f'' : ''X'' → ''Y'' in hom(''S''), both the source ''X'' and the target ''Y'' are in ob(''S''), *for every pair of morphisms ''f'' and ''g'' in hom(''S'') the composite ''f'' o ''g'' is in hom(''S'') whenever it is defined. These conditions ensure that ''S'' is a category in its own right: its collection of objects is ob(''S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Otto Hölder
Ludwig Otto Hölder (December 22, 1859 – August 29, 1937) was a German mathematician born in Stuttgart. Early life and education Hölder was the youngest of three sons of professor Otto Hölder (1811–1890), and a grandson of professor Christian Gottlieb Hölder (1776–1847); his two brothers also became professors. He first studied at the ''Polytechnikum'' (which today is the University of Stuttgart) and then in 1877 went to Berlin where he was a student of Leopold Kronecker, Karl Weierstrass, and Ernst Kummer. In 1877, he entered the University of Berlin and took his doctorate from the University of Tübingen in 1882. The title of his doctoral thesis was "Beiträge zur Potentialtheorie" ("Contributions to potential theory"). Following this, he went to the University of Leipzig but was unable to habilitation, habilitate there, instead earning a second doctorate and habilitation at the University of Göttingen, both in 1884. Academic career and later life He was unable to ge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Group
In abstract algebra, a branch of mathematics, an Archimedean group is a linearly ordered group for which the Archimedean property holds: every two positive group elements are bounded by integer multiples of each other. The set R of real numbers together with the operation of addition and the usual ordering relation between pairs of numbers is an Archimedean group. By a result of Otto Hölder, every Archimedean group is isomorphic to a subgroup of this group. The name "Archimedean" comes from Otto Stolz, who named the Archimedean property after its appearance in the works of Archimedes. Definition An additive group consists of a set of elements, an associative addition operation that combines pairs of elements and returns a single element, an identity element (or zero element) whose sum with any other element is the other element, and an additive inverse operation such that the sum of any element and its inverse is zero. A group is a linearly ordered group when, in addition, its ele ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |