HOME
*





Cone Theorem
In mathematics, the cone of curves (sometimes the Kleiman-Mori cone) of an algebraic variety X is a combinatorial invariant of importance to the birational geometry of X. Definition Let X be a proper variety. By definition, a (real) ''1-cycle'' on X is a formal linear combination C=\sum a_iC_i of irreducible, reduced and proper curves C_i, with coefficients a_i \in \mathbb. ''Numerical equivalence'' of 1-cycles is defined by intersections: two 1-cycles C and C' are numerically equivalent if C \cdot D = C' \cdot D for every Cartier divisor D on X. Denote the real vector space of 1-cycles modulo numerical equivalence by N_1(X). We define the ''cone of curves'' of X to be : NE(X) = \left\ where the C_i are irreducible, reduced, proper curves on X, and _i/math> their classes in N_1(X). It is not difficult to see that NE(X) is indeed a convex cone in the sense of convex geometry. Applications One useful application of the notion of the cone of curves is the Kleiman condition, w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flip (algebraic Geometry)
In algebraic geometry, flips and flops are codimension-2 surgery operations arising in the minimal model program, given by blowing up along a relative canonical ring. In dimension 3 flips are used to construct minimal models, and any two birationally equivalent minimal models are connected by a sequence of flops. It is conjectured that the same is true in higher dimensions. The minimal model program The minimal model program can be summarised very briefly as follows: given a variety X, we construct a sequence of contractions X = X_1\rightarrow X_2 \rightarrow \cdots \rightarrow X_n , each of which contracts some curves on which the canonical divisor K_ is negative. Eventually, K_ should become nef (at least in the case of nonnegative Kodaira dimension), which is the desired result. The major technical problem is that, at some stage, the variety X_i may become 'too singular', in the sense that the canonical divisor K_ is no longer a Cartier divisor, so the intersection num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contraction Morphism
In algebraic geometry, a contraction morphism is a surjective projective morphism f: X \to Y between normal projective varieties (or projective schemes) such that f_* \mathcal_X = \mathcal_Y or, equivalently, the geometric fibers are all connected ( Zariski's connectedness theorem). It is also commonly called an algebraic fiber space, as it is an analog of a fiber space in algebraic topology. By the Stein factorization, any surjective projective morphism is a contraction morphism followed by a finite morphism. Examples include ruled surfaces and Mori fiber spaces. Birational perspective The following perspective is crucial in birational geometry (in particular in Mori's minimal model program). Let ''X'' be a projective variety and \overline(X) the closure of the span of irreducible curves on ''X'' in N_1(X) = the real vector space of numerical equivalence classes of real 1-cycles on ''X''. Given a face ''F'' of \overline(X), the contraction morphism associated to ''F'', if it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, ''morphism'' is a broadly similar idea: the mathematical objects involved need not be sets, and the relationships between them may be something other than maps, although the morphisms between the objects of a given category have to behave similarly to maps in that they have to admit an associative operation similar to function composition. A morphism in category theory is an abstraction of a homomorphism. The study of morphisms and of the structures (called "objects") over which they are defined is central to category theory. Much of the terminology of morphisms, as well as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rational Variety
In mathematics, a rational variety is an algebraic variety, over a given field ''K'', which is birationally equivalent to a projective space of some dimension over ''K''. This means that its function field is isomorphic to :K(U_1, \dots , U_d), the field of all rational functions for some set \ of indeterminates, where ''d'' is the dimension of the variety. Rationality and parameterization Let ''V'' be an affine algebraic variety of dimension ''d'' defined by a prime ideal ''I'' = ⟨''f''1, ..., ''f''''k''⟩ in K _1, \dots , X_n/math>. If ''V'' is rational, then there are ''n'' + 1 polynomials ''g''0, ..., ''g''''n'' in K(U_1, \dots , U_d) such that f_i(g_1/g_0, \ldots, g_n/g_0)=0. In order words, we have a x_i=\frac(u_1,\ldots,u_d) of the variety. Conversely, such a rational parameterization induces a field homomorphism of the field of functions of ''V'' into K(U_1, \dots , U_d). But this homomorphism is not necessarily onto. If such a parameterization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Half-space
In geometry, a half-space is either of the two parts into which a plane divides the three-dimensional Euclidean space. If the space is two-dimensional, then a half-space is called a half-plane (open or closed). A half-space in a one-dimensional space is called a ''half-line'' or '' ray''. More generally, a half-space is either of the two parts into which a hyperplane divides an affine space. That is, the points that are not incident to the hyperplane are partitioned into two convex sets (i.e., half-spaces), such that any subspace connecting a point in one set to a point in the other must intersect the hyperplane. A half-space can be either ''open'' or ''closed''. An open half-space is either of the two open sets produced by the subtraction of a hyperplane from the affine space. A closed half-space is the union of an open half-space and the hyperplane that defines it. A half-space may be specified by a linear inequality, derived from the linear equation that specifies the definin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ample Divisor
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety ''X'' amounts to understanding the different ways of mapping ''X'' into projective space. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of an ample divisor. In more detail, a line bundle is called basepoint-free if it has enough sections to give a morphism to projective space. A line bundle is semi-ample if some positive power of it is basepoint-free; semi-ampleness is a kind of "nonnegativity". More strongly, a line bun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. More generally, an algebraic curve is an algebraic variety of dimension one. Equivalently, an algebraic curve is an algebraic variety that is birationally equivalent to an algebraic plane curve. If the curve is contained in an affine space or a projective space, one can take a projection for such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countably Many
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Variety
In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables with coefficients in ''k'', that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of \mathbb^n. A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial. If ''X'' is a projective variety defined by a homogeneous prime ideal ''I'', then the quotient ring :k _0, \ldots, x_nI is called the homogeneous coordinate ring of ''X''. Basic invariants of ''X'' such as the degree and the dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vyacheslav Shokurov
Vyacheslav Vladimirovich Shokurov (russian: Вячеслав Владимирович Шокуров; born 18 May 1950) is a Russian mathematician best known for his research in algebraic geometry. The proof of the Noether–Enriques–Petri theorem, the cone theorem, the existence of a line on smooth Fano varieties and, finally, the existence of log flips—these are several of Shokurov's contributions to the subject. Early years In 1968 Shokurov became a student at the Faculty of Mechanics and Mathematics of Moscow State University. Already as an undergraduate, Shokurov showed himself to be a mathematician of outstanding talent. In 1970, he proved the scheme analog of the Noether–Enriques–Petri theorem, which later allowed him to solve a Schottky-type problem for the polarized Prym varieties, and to prove the existence of a line on smooth Fano varieties. Upon his graduation Shokurov entered the Ph.D. program in Moscow State University under the supervision of Yuri Man ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Miles Reid
Miles Anthony Reid FRS (born 30 January 1948) is a mathematician who works in algebraic geometry. Education Reid studied the Cambridge Mathematical Tripos at Trinity College, Cambridge and obtained his Ph.D. in 1973 under the supervision of Peter Swinnerton-Dyer and Pierre Deligne. Career Reid was a research fellow of Christ's College, Cambridge from 1973 to 1978. He became a lecturer at the University of Warwick in 1978 and was appointed professor there in 1992. He has written two well known books: ''Undergraduate Algebraic Geometry'' and ''Undergraduate Commutative Algebra''. Awards and honours Reid was elected a Fellow of the Royal Society in 2002. In the same year, he participated as an Invited Speaker in the International Congress of Mathematicians in Beijing. Reid was awarded the Senior Berwick Prize in 2006 for his paper with Alessio Corti and Aleksandr Pukhlikov, "Fano 3-fold hypersurfaces", which made a big advance in the study of 3-dimensional algebraic variet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]