Broom Space
   HOME
*



picture info

Broom Space
In topology, a branch of mathematics, the infinite broom is a subset of the Euclidean plane that is used as an example distinguishing various notions of connectedness. The closed infinite broom is the closure of the infinite broom, and is also referred to as the broom space.Chapter 6 exercise 3.5 of Definition The infinite broom is the subset of the Euclidean plane that consists of all closed line segments joining the origin to the point as ''n'' varies over all positive integers, together with the interval (½, 1] on the ''x''-axis. The closed infinite broom is then the infinite broom together with the interval (0, ½] on the ''x''-axis. In other words, it consists of all closed line segments joining the origin to the point or to the point . Properties Both the infinite broom and its closure are Connected space, connected, as every open set in the plane which contains the segment on the ''x''-axis must intersect slanted segments. Neither are locally connected. Despite t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Infinite Broom
In topology, a branch of mathematics, the infinite broom is a subset of the Euclidean plane that is used as an example distinguishing various notions of connectedness. The closed infinite broom is the closure of the infinite broom, and is also referred to as the broom space.Chapter 6 exercise 3.5 of Definition The infinite broom is the subset of the Euclidean plane that consists of all closed line segments joining the origin to the point as ''n'' varies over all positive integers, together with the interval (½, 1] on the ''x''-axis. The closed infinite broom is then the infinite broom together with the interval (0, ½] on the ''x''-axis. In other words, it consists of all closed line segments joining the origin to the point or to the point . Properties Both the infinite broom and its closure are Connected space, connected, as every open set in the plane which contains the segment on the ''x''-axis must intersect slanted segments. Neither are locally connected. Despite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dover Publications
Dover Publications, also known as Dover Books, is an American book publisher founded in 1941 by Hayward and Blanche Cirker. It primarily reissues books that are out of print from their original publishers. These are often, but not always, books in the public domain. The original published editions may be scarce or historically significant. Dover republishes these books, making them available at a significantly reduced cost. Classic reprints Dover reprints classic works of literature, classical sheet music, and public-domain images from the 18th and 19th centuries. Dover also publishes an extensive collection of mathematical, scientific, and engineering texts. It often targets its reprints at a niche market, such as woodworking. Starting in 2015, the company branched out into graphic novel reprints, overseen by Dover acquisitions editor and former comics writer and editor Drew Ford. Most Dover reprints are photo facsimiles of the originals, retaining the original pagination an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Topologies
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property. Widely known topologies * The Baire space − \N^ with the product topology, where \N denotes the natural numbers endowed with the discrete topology. It is the space of all sequences of natural numbers. * Cantor set − A subset of the closed interval , 1/math> with remarkable properties. ** Cantor dust * Discrete topology − All subsets are open. * Euclidean topology − The natural topology on Euclidean space \Reals^n induced by the Euclidean metric, which is itself induced by the Euclidean norm. ** Real line − \Reals ** Space-filling curve ** Unit interval − , 1/math> * Extended real number line * Hilbert cube − , 1/1\times , 1/2\times , 1/3\times \cdots ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE