HOME
*



picture info

Integer Broom Topology
In general topology, a branch of mathematics, the integer broom topology is an example of a topology on the so-called integer broom space ''X''. Definition of the integer broom space The integer broom space ''X'' is a subset of the plane R2. Assume that the plane is parametrised by polar coordinates. The integer broom contains the origin and the points such that ''n'' is a non-negative integer and , where Z+ is the set of positive integers. The image on the right gives an illustration for and . Geometrically, the space consists of a collection of convergent sequences. For a fixed ''n'', we have a sequence of points − lying on circle with centre (0, 0) and radius ''n'' − that converges to the point (''n'', 0). Definition of the integer broom topology We define the topology on ''X'' by means of a product topology. The integer broom space is given by the polar coordinates :(n, \theta) \in \ \times \ \, . Let us write for simplicity. The integer broom topology on ''X'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Topology
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology. The fundamental concepts in point-set topology are ''continuity'', ''compactness'', and ''connectedness'': * Continuous functions, intuitively, take nearby points to nearby points. * Compact sets are those that can be covered by finitely many sets of arbitrarily small size. * Connected sets are sets that cannot be divided into two pieces that are far apart. The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a ''t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Topologies
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property. Widely known topologies * The Baire space − \N^ with the product topology, where \N denotes the natural numbers endowed with the discrete topology. It is the space of all sequences of natural numbers. * Cantor set − A subset of the closed interval , 1/math> with remarkable properties. ** Cantor dust * Discrete topology − All subsets are open. * Euclidean topology − The natural topology on Euclidean space \Reals^n induced by the Euclidean metric, which is itself induced by the Euclidean norm. ** Real line − \Reals ** Space-filling curve ** Unit interval − , 1/math> * Extended real number line * Hilbert cube − , 1/1\times , 1/2\times , 1/3\times \cdots with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Broom
In topology, a branch of mathematics, the infinite broom is a subset of the Euclidean plane that is used as an example distinguishing various notions of connectedness. The closed infinite broom is the closure of the infinite broom, and is also referred to as the broom space.Chapter 6 exercise 3.5 of Definition The infinite broom is the subset of the Euclidean plane that consists of all closed line segments joining the origin to the point as ''n'' varies over all positive integers, together with the interval (½, 1] on the ''x''-axis. The closed infinite broom is then the infinite broom together with the interval (0, ½] on the ''x''-axis. In other words, it consists of all closed line segments joining the origin to the point or to the point . Properties Both the infinite broom and its closure are Connected space, connected, as every open set in the plane which contains the segment on the ''x''-axis must intersect slanted segments. Neither are locally connected. Despite t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Comb Space
In mathematics, particularly topology, a comb space is a particular subspace of \R^2 that resembles a comb. The comb space has properties that serve as a number of counterexamples. The topologist's sine curve has similar properties to the comb space. The deleted comb space is a variation on the comb space. Formal definition Consider \R^2 with its standard topology and let ''K'' be the set \. The set ''C'' defined by: :(\ \times ,1) \cup (K \times ,1 \cup ( ,1\times \) considered as a subspace of \R^2 equipped with the subspace topology is known as the comb space. The deleted comb space, D, is defined by: :\ \cup (K \times ,1 \cup ( ,1\times \) . This is the comb space with the line segment \ \times contractible,_but_not_locally_contractible,_Locally_connected_space.html" "title="Contractible_space.html" "title="locally_connected_space.html" "title=",1) deleted. Topological properties The comb space and the deleted comb space have some interesting topological prope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Connected
In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets. Background Throughout the history of topology, connectedness and compactness have been two of the most widely studied topological properties. Indeed, the study of these properties even among subsets of Euclidean space, and the recognition of their independence from the particular form of the Euclidean metric, played a large role in clarifying the notion of a topological property and thus a topological space. However, whereas the structure of ''compact'' subsets of Euclidean space was understood quite early on via the Heine–Borel theorem, ''connected'' subsets of \R^n (for ''n'' > 1) proved to be much more complicated. Indeed, while any compact Hausdorff space is locally compact, a connected space—and even a connected subset of the Euclidean plane—need not be locally connected (see below). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Path Connected
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T1 Space
In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms. Definitions Let ''X'' be a topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ... and let ''x'' and ''y'' be points in ''X''. We say that ''x'' and ''y'' are if each lies in a neighbourhood (mathematics), neighbourhood that does not contain the other point. * ''X'' is called a T1 space if any two distinct points in ''X'' are separated. * ''X'' is called an R0 space if any two topologically distinguishable points in ''X'' are separa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

T0 Space
T, or t, is the twentieth letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''tee'' (pronounced ), plural ''tees''. It is derived from the Semitic Taw 𐤕 of the Phoenician and Paleo-Hebrew script (Aramaic and Hebrew Taw ת/𐡕/, Syriac Taw ܬ, and Arabic ت Tāʼ) via the Greek letter τ (tau). In English, it is most commonly used to represent the voiceless alveolar plosive, a sound it also denotes in the International Phonetic Alphabet. It is the most commonly used consonant and the second most commonly used letter in English-language texts. History '' Taw'' was the last letter of the Western Semitic and Hebrew alphabets. The sound value of Semitic ''Taw'', Greek alphabet Tαυ (''Tau''), Old Italic and Latin T has remained fairly constant, representing in each of these; and it has also kept its original basic shape in most of these alphabets. Use in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subspace Topology
In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced topology, or the trace topology). Definition Given a topological space (X, \tau) and a subset S of X, the subspace topology on S is defined by :\tau_S = \lbrace S \cap U \mid U \in \tau \rbrace. That is, a subset of S is open in the subspace topology if and only if it is the intersection of S with an open set in (X, \tau). If S is equipped with the subspace topology then it is a topological space in its own right, and is called a subspace of (X, \tau). Subsets of topological spaces are usually assumed to be equipped with the subspace topology unless otherwise stated. Alternatively we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map :\iota: S \hookrightarrow X is continuous. More ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]