In mathematics, particularly
topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, a comb space is a particular
subspace of
that resembles a
comb
A comb is a tool consisting of a shaft that holds a row of teeth for pulling through the hair to clean, untangle, or style it. Combs have been used since prehistoric times, having been discovered in very refined forms from settlements dating ba ...
. The comb space has properties that serve as a number of
counterexamples
A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "John Smith is not a lazy student" is ...
. The
topologist's sine curve
In the branch of mathematics known as topology, the topologist's sine curve or Warsaw sine curve is a topological space with several interesting properties that make it an important textbook example.
It can be defined as the graph of the functio ...
has similar properties to the comb space. The deleted comb space is a variation on the comb space.
Formal definition
Consider
with its
standard topology
In mathematics, the real coordinate space of dimension , denoted ( ) or is the set of the -tuples of real numbers, that is the set of all sequences of real numbers. With component-wise addition and scalar multiplication, it is a real vector ...
and let ''K'' be the
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
. The set ''C'' defined by:
:
considered as a subspace of
equipped with the
subspace topology
In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced to ...
is known as the comb space. The deleted comb space, D, is defined by:
:
.
This is the comb space with the line segment
,_but_not_locally_contractible,_Locally_connected_space.html" "title="Contractible_space.html" "title="locally_connected_space.html" "title=",1) deleted.
The comb space and the deleted comb space have some interesting topological properties mostly related to the notion of locally connected space">connectedness