Arithmetic Topology
   HOME
*





Arithmetic Topology
Arithmetic topology is an area of mathematics that is a combination of algebraic number theory and topology. It establishes an analogy between number fields and closed, orientable 3-manifolds. Analogies The following are some of the analogies used by mathematicians between number fields and 3-manifolds: #A number field corresponds to a closed, orientable 3-manifold # Ideals in the ring of integers correspond to links, and prime ideals correspond to knots. #The field Q of rational numbers corresponds to the 3-sphere. Expanding on the last two examples, there is an analogy between knots and prime numbers in which one considers "links" between primes. The triple of primes are "linked" modulo 2 (the Rédei symbol is −1) but are "pairwise unlinked" modulo 2 (the Legendre symbols are all 1). Therefore these primes have been called a "proper Borromean triple modulo 2" or "mod 2 Borromean primes". History In the 1960s topological interpretations of class field theory were given by Jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael Artin
Michael Artin (; born 28 June 1934) is a German-American mathematician and a professor emeritus in the Massachusetts Institute of Technology mathematics department, known for his contributions to algebraic geometry.Faculty profile
, MIT mathematics department, retrieved 2011-01-03


Life and career

Michael Artin or Artinian was born in , Germany, and brought up in . His parents were Natalia Naumovna Jasny (Natascha) and
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Curtis T
Curtis or Curtiss is a common English given name and surname of Anglo-Norman origin from the Old French ''curteis'' (Modern French ''courtois'') which derived from the Spanish Cortés (of which Cortez is a variation) and the Portuguese and Galician Cardoso. The name means "polite, courteous, or well-bred". It is a compound of ''curt-'' "court" and ''-eis'' "-ish". The spelling ''u'' to render in Old French was mainly Anglo-Norman and Norman, when the spelling ''o'' was the usual Parisian French one, Modern French ''ou'' ''-eis'' is the Old French suffix for ''-ois'', Western French (including Anglo-Norman) keeps ''-eis'', simplified to ''-is'' in English. The word ''court'' shares the same etymology but retains a Modern French spelling, after the orthography had changed.T. F. Hoad, ''English Etymology'', Oxford University Press paperbook 1993. p. 101a It was brought to England (and subsequently, the rest of the Isles) via the Norman Conquest. In the United Kingdom, the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Langlands Program
In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics." The Langlands program consists of some very complicated theoretical abstractions, which can be difficult even for specialist mathematicians to grasp. To oversimplify, the fundamental lemma of the project posits a direct connection between the generalized fundamental representation of a finite field with its group extension to the automorphic forms under which it is invariant. This is accomplished through abstraction to higher dimensional integrati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topological Quantum Field Theory
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory. In condensed matter physics, topological quantum field theories are the low-energy effective theories of topologically ordered states, such as fractional quantum Hall states, string-net condensed states, and other strongly correlated quantum liquid states. Overview In a topological field theory, correlation functions do not depend on the metric of spacetime. This means that the theory is not sensitive to changes in the shape of sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Arithmetic Dynamics
Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Classically, discrete dynamics refers to the study of the iteration of self-maps of the complex plane or real line. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, -adic, and/or algebraic points under repeated application of a polynomial or rational function. A fundamental goal is to describe arithmetic properties in terms of underlying geometric structures. ''Global arithmetic dynamics'' is the study of analogues of classical diophantine geometry in the setting of discrete dynamical systems, while ''local arithmetic dynamics'', also called p-adic or nonarchimedean dynamics, is an analogue of classical dynamics in which one replaces the complex numbers by a -adic field such as or and studies chaotic behavior and the Fatou and Julia sets. The following table describes a rough correspondence between Diophantine equations, espec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic Geometry
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic variety, algebraic varieties. In more abstract terms, arithmetic geometry can be defined as the study of scheme (mathematics), schemes of Finite morphism#Morphisms of finite type, finite type over the spectrum of a ring, spectrum of the ring of integers. Overview The classical objects of interest in arithmetic geometry are rational points: solution set, sets of solutions of a system of polynomial equations over number fields, finite fields, p-adic fields, or Algebraic function field, function fields, i.e. field (mathematics), fields that are not algebraically closed excluding the real numbers. Rational points can be directly characterized by height functions which measure their arithmetic complexity. The structure of algebraic varieties defined over ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Barry Mazur
Barry Charles Mazur (; born December 19, 1937) is an American mathematician and the Gerhard Gade University Professor at Harvard University. His contributions to mathematics include his contributions to Wiles's proof of Fermat's Last Theorem in number theory, Mazur's torsion theorem in arithmetic geometry, the Mazur swindle in geometric topology, and the Mazur manifold in differential topology. Life Born in New York City, Mazur attended the Bronx High School of Science and MIT, although he did not graduate from the latter on account of failing a then-present ROTC requirement. He was nonetheless accepted for graduate studies at Princeton University, from where he received his PhD in mathematics in 1959 after completing a doctoral dissertation titled "On embeddings of spheres." He then became a Junior Fellow at Harvard University from 1961 to 1964. He is the Gerhard Gade University Professor and a Senior Fellow at Harvard. He is the brother of Joseph Mazur and the father of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot (mathematics)
In mathematics, a knot is an embedding of the circle into three-dimensional Euclidean space, (also known as ). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of which takes one knot to the other. A crucial difference between the standard mathematical and conventional notions of a knot is that mathematical knots are closed — there are no ends to tie or untie on a mathematical knot. Physical properties such as friction and thickness also do not apply, although there are mathematical definitions of a knot that take such properties into account. The term ''knot'' is also applied to embeddings of in , especially in the case . The branch of mathematics that studies knots is known as knot theory and has many relations to graph theory. Formal definition A knot is an embedding of the circle () into three-dimensional Euclidean space (), or the 3-sphere (), since the 3-sphere is compact. Two knots are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Ideals
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. Prime ideals for commutative rings An ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ideal in \Z. Examples * A simple example: In the ring R=\Z, the subset of even numbers is a prime ideal. * Given an integral domain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yuri Manin
Yuri Ivanovich Manin (russian: Ю́рий Ива́нович Ма́нин; born 16 February 1937) is a Russian mathematician, known for work in algebraic geometry and diophantine geometry, and many expository works ranging from mathematical logic to theoretical physics. Moreover, Manin was one of the first to propose the idea of a quantum computer in 1980 with his book ''Computable and Uncomputable''. Life and career Manin gained a doctorate in 1960 at the Steklov Mathematics Institute as a student of Igor Shafarevich. He is now a Professor at the Max-Planck-Institut für Mathematik in Bonn, and a professor emeritus at Northwestern University. Manin's early work included papers on the arithmetic and formal groups of abelian varieties, the Mordell conjecture in the function field case, and algebraic differential equations. The Gauss–Manin connection is a basic ingredient of the study of cohomology in families of algebraic varieties. He wrote a book on cubic surfaces and cubic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]